说说GAN(生成式对抗网络)
在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。
encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可能地相同的重建的表示。在训练时,decoder 强迫 auto-encoder选择最有信息量的特征,最终保存在code中。重建的输入越靠近原始输入,最终得到的表示越好。
通过得到的encoder和decoder可以做很多事情。例如,可以通过encoder网络来对原始数据降维和自动抽取特征。我们也可以随机生成的很多code(低维向量)经过decoder网络来得到很多随机生成的数据。如图:

对于生成数据这个任务来说,比Auto-encoder更擅长的是VAE(Variational Auto-Encoding ),VAE在Auto-encoder框架加入了噪声影响,同时加入了类似正则的约束。但是VAE存在的问题是VAE并不是真正的生成数据,而是生成一个和和训练样本最接近的数据。例如在训练过程中:
output1:
output2:
由于output1和output2都只变化了一个像素,VAE会认为output1和output2的损失是一样的,但实际上output1比output2更像7。
GAN(Generative Adversarial Net)
GAN中有一个generator和discriminator。discriminator负责判断是真实数据还是生成的数据,generator负责生成数据它的目标是生成的数据能够骗过discriminator。

generator和discriminator是一种竞争和对抗的关系。
极小极大博弈问题:
\[\underset{G}{min} \: \underset{D}{max}V(D,G) =E_{x\sim p_{data}(x)}[logD(x)]+E_{z\sim p_{z}(z)}[log(1-D(G(z)))]\]
GAN的算法流程:

交替更新discriminator和generator,最终当\(P_{g}\)收敛到真实分布\(P_{data}\)时,达到均衡。
理论推导可以参考这里
说说GAN(生成式对抗网络)的更多相关文章
- GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...
- GAN生成式对抗网络(三)——mnist数据生成
通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...
- GAN生成式对抗网络(一)——原理
生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 不要怂,就是GAN (生成式对抗网络) (六):Wasserstein GAN(WGAN) TensorFlow 代码
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编 ...
- 不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN 代码与网络的 Graph
GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu ...
- 不要怂,就是GAN (生成式对抗网络) (二)
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...
- 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...
- 不要怂,就是GAN (生成式对抗网络) (二):数据读取和操作
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...
随机推荐
- 小小知识点(二十四)什么是5G
转自 https://www.ifanr.com/1149419 一个简单且神奇的公式 今天的故事,从一个公式开始讲起.这是一个既简单又神奇的公式.说它简单,是因为它一共只有 3 个字母.而说它神奇, ...
- NetCore 启动地址配置详解
背景 程序在发布部署时候,设置环境ASPNETCORE_URLS不生效,也没在代码里使用UseUrls("xxxx"),启动一直是http://localhost:5000.最后测 ...
- mui选择器和软键盘冲突解决
只需要让此节点失焦即可: onfocus="this.blur();"
- linux各目录及重要目录的详细介绍
1 目录说明 根目录 (/) /bin bin是Binary的缩写, 这个目录存放着最经常使用的命令,比如ls,cat,mkdir等 /dev dev是Device(设备)的缩写, 该目录下存放的是L ...
- zabbix安装和使用
前言:zabbix是一款很好用的监控工具,相比nagios(也是监控工具的一种)而言,zabbix提供了强大的视图界面,操作简单,功能强大,只需在页面配置即可,让你用的开心,回家放心. zabbix监 ...
- GitHub 标星 2.4w+,最适合编程新手入门的宝藏项目推荐
照惯例这周给大家推荐几个Github上高星的优秀项目,我的github:图灵的猫 ,也欢迎大家follow~ 下面这是第一个,也是首推的新手入门项目,以前我入门的时候如果有这样一个项目,知识广度和 ...
- 解决vue中element组件样式修改无效
vue中element组件样式修改无效 <style> .detail{ .el-input__inner { height: 48px; } } </style> 直接写st ...
- mysql时间类型和格式转换
内容目录 简介mysql时间类型DATE_FORMAT()函数 简介 今天开发中,做一个功能需要对历史数据进行补充,相信大家也遇到过这样的情况,这个历史数据需要按月份和人的id进行区分,于是想到了my ...
- 主席树 - 查询某区间第 K 大
You are working for Macrohard company in data structures department. After failing your previous tas ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...