吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data", one_hot=True) # 定义网络的超参数
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 5 # 定义网络的参数
# 输入的维度 (img shape: 28*28)
n_input = 784
# 标记的维度 (0-9 digits)
n_classes = 10
# Dropout的概率,输出的可能性
dropout = 0.75 # 输入占位符
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
#dropout (keep probability)
keep_prob = tf.placeholder(tf.float32) # 定义卷积操作
def conv2d(name,x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
# 使用relu激活函数
return tf.nn.relu(x,name=name) # 定义池化层操作
def maxpool2d(name,x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME',name=name) # 规范化操作
def norm(name, l_input, lsize=4):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0,beta=0.75, name=name) # 定义所有的网络参数
weights = {
'wc1': tf.Variable(tf.random_normal([11, 11, 1, 96])),
'wc2': tf.Variable(tf.random_normal([5, 5, 96, 256])),
'wc3': tf.Variable(tf.random_normal([3, 3, 256, 384])),
'wc4': tf.Variable(tf.random_normal([3, 3, 384, 384])),
'wc5': tf.Variable(tf.random_normal([3, 3, 384, 256])),
'wd1': tf.Variable(tf.random_normal([4*4*256, 4096])),
'wd2': tf.Variable(tf.random_normal([4096, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([96])),
'bc2': tf.Variable(tf.random_normal([256])),
'bc3': tf.Variable(tf.random_normal([384])),
'bc4': tf.Variable(tf.random_normal([384])),
'bc5': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([4096])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
} # 定义整个网络
def alex_net(x, weights, biases, dropout):
# 向量转为矩阵 Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1]) # 第一层卷积
# 卷积
conv1 = conv2d('conv1', x, weights['wc1'], biases['bc1'])
# 下采样
pool1 = maxpool2d('pool1', conv1, k=2)
# 规范化
norm1 = norm('norm1', pool1, lsize=4) # 第二层卷积
# 卷积
conv2 = conv2d('conv2', norm1, weights['wc2'], biases['bc2'])
# 最大池化(向下采样)
pool2 = maxpool2d('pool2', conv2, k=2)
# 规范化
norm2 = norm('norm2', pool2, lsize=4) # 第三层卷积
# 卷积
conv3 = conv2d('conv3', norm2, weights['wc3'], biases['bc3'])
# 规范化
norm3 = norm('norm3', conv3, lsize=4) # 第四层卷积
conv4 = conv2d('conv4', norm3, weights['wc4'], biases['bc4']) # 第五层卷积
conv5 = conv2d('conv5', conv4, weights['wc5'], biases['bc5'])
# 最大池化(向下采样)
pool5 = maxpool2d('pool5', conv5, k=2)
# 规范化
norm5 = norm('norm5', pool5, lsize=4) # 全连接层1
fc1 = tf.reshape(norm5, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 =tf.add(tf.matmul(fc1, weights['wd1']),biases['bd1'])
fc1 = tf.nn.relu(fc1)
# dropout
fc1=tf.nn.dropout(fc1,dropout) # 全连接层2
fc2 = tf.reshape(fc1, [-1, weights['wd2'].get_shape().as_list()[0]])
fc2 =tf.add(tf.matmul(fc2, weights['wd2']),biases['bd2'])
fc2 = tf.nn.relu(fc2)
# dropout
fc2=tf.nn.dropout(fc2,dropout) # 输出层
out = tf.add(tf.matmul(fc2, weights['out']) ,biases['out'])
return out # 构建模型
pred = alex_net(x, weights, biases, keep_prob) # 定义损失函数和优化器
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # 评估函数
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 初始化变量
init = tf.global_variables_initializer() # 开启一个训练
with tf.Session() as sess:
sess.run(init)
step = 1
# 开始训练,直到达到training_iters,即200000
while step * batch_size < training_iters:
#获取批量数据
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout})
if step % display_step == 0:
# 计算损失值和准确度,输出
loss,acc = sess.run([cost,accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
print ("Optimization Finished!")
# 计算测试集的精确度
print ("Testing Accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images[:256],y: mnist.test.labels[:256],keep_prob: 1.}))
吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集的更多相关文章
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 滑动平均模型
import tensorflow as tf v1 = tf.Variable(0, dtype=tf.float32) step = tf.Variable(0, trainable=False) ...
- 吴裕雄 python 神经网络——TensorFlow 实现LeNet-5模型处理MNIST手写数据集
import os import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import ...
- TensorFlow 之 手写数字识别MNIST
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
随机推荐
- excel用xlrd日期变成42631.0
datetime的解决办法混合数据的表中有个日期:2016/9/18 通过table.row_values(row_number)[1]读取时,显示的结果为:42631.0 查看row_values方 ...
- 【转】VS2017离线安装
[转自]https://www.cnblogs.com/feigao/p/8409606.html 第一步:下载离线安装包 https://www.visualstudio.com/zh-hans/d ...
- 一点点学习PS--实战四
本节实战,较为基础,主要是设置画布大小.字体的输入 1.工具使用 文字工具:直排文字工具,竖排文字 2.重点: (1)画影子: ----人物图层拷贝,CTRL+T,右键选择垂直翻转,拖拽出来,即可得到 ...
- 杭电oj_1713——相遇周期(java实现)
question:相遇周期 思路: 首先将两个分数化为最简形式(也就是分子分母同时除以最大公约数) 然后题意是要求两个分数的最小公倍数 借助以下两个公式,就可以求出结果 1.最小公倍数*最大公约数 = ...
- java课后作业3
1.动手动脑 由于类中定义了需要参数的构造方法,导致系统不再提供默认的构造方法. 2.java字段初始化 运行结果 100 300 java字段在初始化时先按照对应的构造方法执行.若构造方法中没有对变 ...
- [HDU4609] 3-idiots - 多项式乘法,FFT
题意:有\(n\)个正整数,求随机选取一个3组合,能构成三角形的概率. Solution: 很容易想到构造权值序列,对其卷积得到任取两条边(可重复)总长度为某数时的方案数序列,我们希望将它转化为两条边 ...
- NOIP做题练习(day4)
A - 同花顺 题面 题解 30分做法 爆搜即可. 60分做法 去重+贪心. 100分做法 去重+贪心后,我们要寻找一段符合条件的最长同花上升子序列 \(L\),\(n-L\) 即为所求的答案. 首先 ...
- Django_后台管理
1. 站点管理 2. 创建超级管理员 3. 添加自己的数据模型 默认是打印字符串的 4. 个性化站点管理的定制 4.1 个性化规则 admin.py 4.2 布尔值定制显示 4.3 插入班级的时候同时 ...
- 理解javaBean
1:什么是JavaBean 组件?使用JavaBean 组件有什么优点?答案:现在软件开发都已经转向了基于组件的开发,目前具备代表性的组件技术有微软的COM.COM+,有Sun 的JavaBean 和 ...
- Swagger-ui接口文档
参考地址 https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X#quick-annotation-overview ...