Dividing the Path
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2858   Accepted: 1064

Description

Farmer John's cows have discovered that the clover growing along the ridge of the hill in his field is particularly good. To keep the clover watered, Farmer John is installing water sprinklers along the ridge of the hill.
To make installation easier, each sprinkler head must be installed along the ridge of the hill (which we can think of as a one-dimensional number line of length L (1 <= L <= 1,000,000); L is even).
Each sprinkler waters the ground along the ridge for some distance in both directions. Each spray radius is an integer in the range A..B (1 <= A <= B <= 1000). Farmer John needs to water the entire ridge in a manner that covers each location on the ridge by exactly one sprinkler head. Furthermore, FJ will not water past the end of the ridge in either direction.
Each of Farmer John's N (1 <= N <= 1000) cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval (S,E). Each of the cow's preferred ranges must be watered by a single sprinkler, which might or might not spray beyond the given range.
Find the minimum number of sprinklers required to water the entire ridge without overlap.

Input

* Line 1: Two space-separated integers: N and L
* Line 2: Two space-separated integers: A and B
* Lines 3..N+2: Each line contains two integers, S and E (0 <= S < E <= L) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge and so are in the range 0..L.

Output

* Line 1: The minimum number of sprinklers required. If it is not possible to design a sprinkler head configuration for Farmer John, output -1.

Sample Input

2 8
1 2
6 7
3 6

Sample Output

3

Hint

INPUT DETAILS:
Two cows along a ridge of length 8. Sprinkler heads are available in integer spray radii in the range 1..2 (i.e., 1 or 2). One cow likes the range 3-6, and the other likes the range 6-7.
OUTPUT DETAILS:
Three sprinklers are required: one at 1 with spray distance 1, and one at 4 with spray distance 2, and one at 7 with spray distance 1. The second sprinkler waters all the clover of the range like by the second cow (3-6). The last sprinkler waters all the clover of the range liked by the first cow (6-7). Here's a diagram:

                 |-----c2----|-c1|       cows' preferred ranges
|---1---|-------2-------|---3---| sprinklers
+---+---+---+---+---+---+---+---+
0 1 2 3 4 5 6 7 8

The sprinklers are not considered to be overlapping at 2 and 6.

Source


// dp[i]=min{dp[j]}+1  i-2*B=<j<=i-2*A
// 单调队列优化 求区间 dp[i-2*B] ~ dp[i-2*A] 最小值
#include <iostream>
#include <algorithm>
#include <queue>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 1000010
int dp[maxn];
bool ok[maxn];
struct node{
int l,r; // 左右 下标 数值
node(){}
node(int a,int b){l=a;r=b;}
}in[],q[maxn];
int flag;
int N,L;
int A,B;
void solve(){
int i,j;
int head=,tail=,tp;
for(i=;i<=N;i++)
for(j=in[i].l+;j<in[i].r;j++)
ok[j]=;
for(i=*A;i<=L;i+=){
tp=i-*A;
if(ok[tp]){
while(head<tail&&dp[tp]<=q[tail-].r)
tail--;
if(ok[tp])
q[tail++]=node(tp,dp[tp]);
}
tp=i-*B;
while(head<tail&&q[head].l<tp)
head++; if(ok[i]&&head<tail) dp[i]=q[head].r+;//因为这里 所以最后结果可能 >=MOD wa的我好难过
}
}
int main()
{ dp[]=;
while(scanf("%d %d",&N,&L)!=EOF){
scanf("%d %d",&A,&B);
int i;
flag=true;
for(i=;i<=N;i++){
scanf("%d %d",&in[i].l,&in[i].r);
if(in[i].r-in[i].l>*B)
flag=false;
}
ok[]=;
if(flag){
for(i=;i<=L;i++)
ok[i]=,dp[i]=MOD;
solve();
}
if(!flag||dp[L]>=MOD) // 就是因为这里没有写 成 >= 而写成 == wa的我好难过 不过还好 OMs
printf("-1\n");
else
printf("%d\n",dp[L]);
} return ;
}

poj 2373 Dividing the Path的更多相关文章

  1. POJ 2373 Dividing the Path(DP + 单调队列)

    POJ 2373 Dividing the Path 描述 农夫约翰的牛发现,在他的田里沿着山脊生长的三叶草是特别好的.为了给三叶草浇水,农夫约翰在山脊上安装了喷水器. 为了使安装更容易,每个喷头必须 ...

  2. POJ 2373 Dividing the Path (单调队列优化DP)题解

    思路: 设dp[i]为覆盖i所用的最小数量,那么dp[i] = min(dp[k] + 1),其中i - 2b <= k <= i -2a,所以可以手动开一个单调递增的队列,队首元素就是k ...

  3. 【POJ】2373 Dividing the Path(单调队列优化dp)

    题目 传送门:QWQ 分析 听说是水题,但还是没想出来. $ dp[i] $为$ [1,i] $的需要的喷头数量. 那么$ dp[i]=min(dp[j])+1 $其中$ j<i $ 这是个$ ...

  4. [POJ 2373][BZOJ 1986] Dividing the Path

    Link: POJ 2373 传送门 Solution: 一开始想错方向的一道简单$dp$,不应该啊…… 我一开始的想法是以$cows' ranges$的节点为状态来$dp$ 但明显一个灌溉的区间的两 ...

  5. poj 3764 The xor-longest Path(字典树)

    题目链接:poj 3764 The xor-longest Path 题目大意:给定一棵树,每条边上有一个权值.找出一条路径,使得路径上权值的亦或和最大. 解题思路:dfs一遍,预处理出每一个节点到根 ...

  6. poj2373 Dividing the Path

    Dividing the Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5060   Accepted: 1782 ...

  7. Dividing the Path POJ - 2373(单调队列优化dp)

    给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...

  8. Dividing the Path POJ - 2373 dp

    题意:你有无数个长度可变的区间d  满足 2a<=d<=2b且为偶数. 现在要你用这些区间填满一条长为L(L<1e6且保证是偶数)的长线段. 满足以下要求: 1.可变区间之间不能有 ...

  9. [USACO2004][poj2373]Dividing the Path(DP+单调队列)

    http://poj.org/problem?id=2373 题意:一条直线分割成N(<=25000)块田,有一群奶牛会在其固定区域吃草,每1把雨伞可以遮住向左右延伸各A到B的区域,一只奶牛吃草 ...

随机推荐

  1. Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi

    Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi This spring, Kaggle hosted two competitions w ...

  2. cf 363D

    贪心加二分 虽然比赛后才过 ........ /************************************************************************* &g ...

  3. 配置sql server2012属性 ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.zh-CHS/s10de_5techref/html/6df812ad-4d80-4503-8a23-47719ce85624.htm

    服务与服务器是两个不同的概念,服务器是提供服务的计算机,配置服务器主要是对内存.处理器.安全性等几个方面配置.由于SQL Server 2005服务器的设置参数比较多,这里选一些比较常用的介绍. 配置 ...

  4. LightOj 1096 - nth Term (矩阵快速幂,简单)

    题目 这道题是很简单的矩阵快速幂,可惜,在队内比赛时我不知什么时候抽风把模版中二分时判断的 ==1改成了==0 ,明明觉得自己想得没错,却一直过不了案例,唉,苦逼的比赛状态真让人抓狂!!! #incl ...

  5. POJ2442Sequence

    http://poj.org/problem?id=2442 题意 :就是输入m个数集,每个含n个数,求从每个集合取一个数后,按非降序输出前n小的和. 思路 : 本来打算是用几个for循环的,后来觉得 ...

  6. ASP.NET 免费开源控件

    AspNetPager分页控件(当前版本:7.5.1) AspNetPager分页控件是应用于ASP.NET WebForm网站或应用程序中的自定义分页控件,支持默认的回发(Postback)分页和U ...

  7. 不要将缓存服务器与Tomcat放在单台机器上,否则出现竞争内存问题

    缓存分为本地缓存和远程分布式缓存,本地缓存访问速度更快但缓存数据量有限,同时存在与应用程序争用内存的情况. 1.不要将缓存服务器与Tomcat放在单台机器上,否则出现竞争内存问题 2.不要将缓存服务器 ...

  8. linux源码Makefile详解

    1.Makefile的作用 (1)决定编译哪些文件 (2)怎样编译这些文件 (3)怎样连接这些文件,最重要的是它们的顺序如何 2.Linux内核Makefile分类 ***************** ...

  9. 用git difff 生成补丁

    http://stackoverflow.com/questions/1191282/how-to-see-the-changes-between-two-commits-without-commit ...

  10. Android开发之assets文件夹中资源的获取

    assets中的文件都是保持原始的文件格式,需要使用AssetManager以字节流的形式读取出来 步骤: 1. 先在Activity里面调用getAssets() 来获取AssetManager引用 ...