poj 2373 Dividing the Path
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2858 | Accepted: 1064 |
Description
To make installation easier, each sprinkler head must be installed along the ridge of the hill (which we can think of as a one-dimensional number line of length L (1 <= L <= 1,000,000); L is even).
Each sprinkler waters the ground along the ridge for some distance in both directions. Each spray radius is an integer in the range A..B (1 <= A <= B <= 1000). Farmer John needs to water the entire ridge in a manner that covers each location on the ridge by exactly one sprinkler head. Furthermore, FJ will not water past the end of the ridge in either direction.
Each of Farmer John's N (1 <= N <= 1000) cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval (S,E). Each of the cow's preferred ranges must be watered by a single sprinkler, which might or might not spray beyond the given range.
Find the minimum number of sprinklers required to water the entire ridge without overlap.
Input
* Line 2: Two space-separated integers: A and B
* Lines 3..N+2: Each line contains two integers, S and E (0 <= S < E <= L) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge and so are in the range 0..L.
Output
Sample Input
2 8
1 2
6 7
3 6
Sample Output
3
Hint
Two cows along a ridge of length 8. Sprinkler heads are available in integer spray radii in the range 1..2 (i.e., 1 or 2). One cow likes the range 3-6, and the other likes the range 6-7.
OUTPUT DETAILS:
Three sprinklers are required: one at 1 with spray distance 1, and one at 4 with spray distance 2, and one at 7 with spray distance 1. The second sprinkler waters all the clover of the range like by the second cow (3-6). The last sprinkler waters all the clover of the range liked by the first cow (6-7). Here's a diagram:
|-----c2----|-c1| cows' preferred ranges
|---1---|-------2-------|---3---| sprinklers
+---+---+---+---+---+---+---+---+
0 1 2 3 4 5 6 7 8
The sprinklers are not considered to be overlapping at 2 and 6.
Source
// dp[i]=min{dp[j]}+1 i-2*B=<j<=i-2*A
// 单调队列优化 求区间 dp[i-2*B] ~ dp[i-2*A] 最小值
#include <iostream>
#include <algorithm>
#include <queue>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MOD 1000000007
#define maxn 1000010
int dp[maxn];
bool ok[maxn];
struct node{
int l,r; // 左右 下标 数值
node(){}
node(int a,int b){l=a;r=b;}
}in[],q[maxn];
int flag;
int N,L;
int A,B;
void solve(){
int i,j;
int head=,tail=,tp;
for(i=;i<=N;i++)
for(j=in[i].l+;j<in[i].r;j++)
ok[j]=;
for(i=*A;i<=L;i+=){
tp=i-*A;
if(ok[tp]){
while(head<tail&&dp[tp]<=q[tail-].r)
tail--;
if(ok[tp])
q[tail++]=node(tp,dp[tp]);
}
tp=i-*B;
while(head<tail&&q[head].l<tp)
head++;
if(ok[i]&&head<tail) dp[i]=q[head].r+;//因为这里 所以最后结果可能 >=MOD wa的我好难过
}
}
int main()
{ dp[]=;
while(scanf("%d %d",&N,&L)!=EOF){
scanf("%d %d",&A,&B);
int i;
flag=true;
for(i=;i<=N;i++){
scanf("%d %d",&in[i].l,&in[i].r);
if(in[i].r-in[i].l>*B)
flag=false;
}
ok[]=;
if(flag){
for(i=;i<=L;i++)
ok[i]=,dp[i]=MOD;
solve();
}
if(!flag||dp[L]>=MOD) // 就是因为这里没有写 成 >= 而写成 == wa的我好难过 不过还好 OMs
printf("-1\n");
else
printf("%d\n",dp[L]);
}
return ;
}
poj 2373 Dividing the Path的更多相关文章
- POJ 2373 Dividing the Path(DP + 单调队列)
POJ 2373 Dividing the Path 描述 农夫约翰的牛发现,在他的田里沿着山脊生长的三叶草是特别好的.为了给三叶草浇水,农夫约翰在山脊上安装了喷水器. 为了使安装更容易,每个喷头必须 ...
- POJ 2373 Dividing the Path (单调队列优化DP)题解
思路: 设dp[i]为覆盖i所用的最小数量,那么dp[i] = min(dp[k] + 1),其中i - 2b <= k <= i -2a,所以可以手动开一个单调递增的队列,队首元素就是k ...
- 【POJ】2373 Dividing the Path(单调队列优化dp)
题目 传送门:QWQ 分析 听说是水题,但还是没想出来. $ dp[i] $为$ [1,i] $的需要的喷头数量. 那么$ dp[i]=min(dp[j])+1 $其中$ j<i $ 这是个$ ...
- [POJ 2373][BZOJ 1986] Dividing the Path
Link: POJ 2373 传送门 Solution: 一开始想错方向的一道简单$dp$,不应该啊…… 我一开始的想法是以$cows' ranges$的节点为状态来$dp$ 但明显一个灌溉的区间的两 ...
- poj 3764 The xor-longest Path(字典树)
题目链接:poj 3764 The xor-longest Path 题目大意:给定一棵树,每条边上有一个权值.找出一条路径,使得路径上权值的亦或和最大. 解题思路:dfs一遍,预处理出每一个节点到根 ...
- poj2373 Dividing the Path
Dividing the Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5060 Accepted: 1782 ...
- Dividing the Path POJ - 2373(单调队列优化dp)
给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...
- Dividing the Path POJ - 2373 dp
题意:你有无数个长度可变的区间d 满足 2a<=d<=2b且为偶数. 现在要你用这些区间填满一条长为L(L<1e6且保证是偶数)的长线段. 满足以下要求: 1.可变区间之间不能有 ...
- [USACO2004][poj2373]Dividing the Path(DP+单调队列)
http://poj.org/problem?id=2373 题意:一条直线分割成N(<=25000)块田,有一群奶牛会在其固定区域吃草,每1把雨伞可以遮住向左右延伸各A到B的区域,一只奶牛吃草 ...
随机推荐
- 【机器学习】BP神经网络实现手写数字识别
最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一 ...
- HTML中动态图片切换JQuery实现
相信很多同学都注意到了,各大新闻或者娱乐网站都含有动态图片切换,那个漂亮的感觉让刚刚学习html的人,都非常好奇和心动.那下面就让我们看一下到底如何实现动态图片切换呢?看一下百度贴吧的效果图吧~ // ...
- linux源码阅读笔记 数组定义
在阅读linux源码的过程中遇到了下面的略显奇怪的结构体数组定义. static struct hd_struct{ long start_sect; long nr_sects; }hd[10]={ ...
- PHP字符串函数之 strstr stristr strchr strrchr
strstr -- 查找字符串的首次出现,返回字符串从第一次出现的位置开始到该字符串的结尾或开始. stristr -- strstr 函数的忽略大小写版本 strchr -- strstr 函数的别 ...
- Cloud Insight 仪表盘上线 | 全面监控 Redis
OneAPM 作为应用性能领域的新兴领军企业,近期发布了重量级新产品-- Cloud Insight 数据管理平台,用它能够监控所有基础组件,并通过 tag 标签对数据进行管理. 近日,Cloud I ...
- 初学tornado之MVC版helloworld
作者:the5fire | 标签: MVC tornado | 发布:2012-08-06 2:41 p.m. 文接上篇,看我一个简单的helloworld,虽然觉得这个框架着实精小,但是实际开发 ...
- 【Linux高频命令专题(11)】cp
概述 cp命令用来复制文件或者目录,是Linux系统中最常用的命令之一.一般情况下,shell会设置一个别名,在命令行下复制文件时,如果目标文件已经存在,就会询问是否覆盖,不管你是否使用-i参数.但是 ...
- tomcat源码导入eclipse
1. 获取源代码 方式一:从官网http://tomcat.apache.org/download-70.cgi 直接下载,官网提供了Binary 和 Source Code两种下载方式,要研究tom ...
- iOS开发--计时器-NSTimer与CADisplayLink
如果程序要让某个方法重复执行,可以借助定时器来完成.CADisplayLink是一个能让我们以和屏幕刷新率相同的频率将内容画到屏幕上的定时器,NSTimer的精确度低了点,比如NSTimer的触发时间 ...
- 2014-9-17二班----9 web project
http://localhost:8080/rwkj1/indexServlet 跳转 http://localhost:8080/rwk ...