https://leetcode.com/problems/edit-distance/

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

用dp[i][j] 来表示 长度为 i 的 word1 经过 dp[i][j]次变换 可以得到长度为 j 的word2,那么我们主要考察两种情况,第一种是:word1[i] == word2[j],那么这个问题的规模便转换成了:dp[i][j] = dp[i-1][j-1]. 第二种情况是:word1[i] != word2[j],那么我们可以删除掉word1中的第 i 个字符,或者我们可以把 word1中的第 i 个字符换成与 word2[j] 相同的字符,或者我们还可以同时 删除 word1[i] 和 word2[j]. 于是状态转移方程为:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1.

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length(); vector<vector<int> > dp(m+, vector<int> (n+, )); for(int i=;i<=m;++i) dp[i][] = i;
for(int j=;j<=n;++j) dp[][j] = j; for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
if(word1[i-] == word2[j-]) {
dp[i][j] = min(dp[i-][j-], dp[i-][j]+);
}
else {
dp[i][j] = min(dp[i-][j], min(dp[i][j-], dp[i-][j-])) + ;
}
}
} return dp[m][n];
}
};

https://leetcode.com/problems/distinct-subsequences/

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

解题报告:用 dp[i][[j] 来表示长度为 i 的 S串 包含了几个 T串。分两种情况考虑,第一种:S[i] != T[j],那么问题转而变成求S[1,...i-1] 包含了几个 T[1...i]。因为S[i] 对解的个数不会产生影响。第二种: S[i] == T[j],那么一种可能是 S[1...i-1] 包含了 若干个 T[1...j-1],或者是S[1...i-1] 包含了 若干个T[1...j]。所以状态转移方程为:

dp[i][j] = dp[i-1][j] + dp[i-1][j-1] (if S[i] == T[j])

dp[i][j] = dp[i-1][j] (if S[i] != T[j])

class Solution {
public:
int numDistinct(string s, string t) {
int m = s.length(), n = t.length();
vector<vector<int> > dp(m+, vector<int>(n+, )); for(int i=;i<=m;++i) dp[i][] = ; for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
if(s[i-] == t[j-]) dp[i][j] = dp[i-][j-] + dp[i-][j];
else dp[i][j] = dp[i-][j];
}
} return dp[m][n];
}
};

leetcode@ [72/115] Edit Distance & Distinct Subsequences (Dynamic Programming)的更多相关文章

  1. (LeetCode 72)Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. [Leetcode 72]编辑距离 Edit Distance

    [题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...

  3. LeetCode(72) Edit Distance

    题目 Given two words word1 and word2, find the minimum number of steps required to convert word1 to wo ...

  4. [leetcode]161. One Edit Distance编辑步数为一

    Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...

  5. [LeetCode] 161. One Edit Distance 一个编辑距离

    Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...

  6. ✡ leetcode 161. One Edit Distance 判断两个字符串是否是一步变换 --------- java

    Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串,判断他们是否是一步变换得到 ...

  7. [LeetCode#161] One Edit Distance

    Problem: Given two strings S and T, determine if they are both one edit distance apart. General Anal ...

  8. 【leetcode刷题笔记】Distinct Subsequences

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  9. [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

随机推荐

  1. POJ1228+凸包

    见代码. /* 凸包(稳定凸包) 题意:给出一些点,这些点要么是凸包的顶点要么是边上的. 证明每条边上都至少有3个点. */ #include<stdio.h> #include<s ...

  2. hdu 4794 FIb求循环节

    很容易看出来这道题是求模n意义下fib数列的最小循环节 对于fib数列的最小循环节的求法,我们可以这样: 1.令n=p1^m1 * p2^m2 * p3^m3…… 2.分别计算fib数列在模p1^m1 ...

  3. Altium designer中级篇-名称决定多边形连接样式

    在工作中积累了诸多小技巧,可以让工作变的更简单,就比如这个多边形铺铜,与大部分规则的不同之处在于,通过更改多边形的名称,就能达到控制多边形规则的效果.这样多边形铺铜变的及其灵活,下面将对这个经验做一个 ...

  4. [ASP.NET MVC] 利用动态注入HTML的方式来设计复杂页面

    原文:[ASP.NET MVC] 利用动态注入HTML的方式来设计复杂页面 随着最终用户对用户体验需求的不断提高,实际上我们很多情况下已经在按照桌面应用的标准来设计Web应用,甚至很多Web页面本身就 ...

  5. 25.allegro中模块复用[原创]

    一,Module reuse 1,打开原理图 ------------------- --------------------- ctrl+i过滤器 直选part ctrl+e 查看属性 查看: 是否 ...

  6. C# 设置鼠标指针

    鼠标光标指针的使用 #region 设置鼠标指针 //设置鼠标指针 //Cursor cus = new Cursor(@"C:\Users\Public\Pictures\Sample P ...

  7. 1210. Kind Spirits(spfa)

    1210 简单模版题 敲个spfa还得瞟下模版.. #include <iostream> #include<cstdio> #include<cstring> # ...

  8. 函数buf_LRU_free_from_unzip_LRU_list

    /******************************************************************//** Try to free an uncompressed ...

  9. c语言变量名称与变量

    0x00030 , 0x00031 ,0x00032 ,0x00033 是四个字节,用来存放0x00010(字母a的地址)

  10. FJOI2007轮状病毒

    不会推公式…… 不会基尔霍夫矩阵…… 不会matrix—tree定理…… 膜拜vfleaking大神…… 题解:http://z55250825.blog.163.com/blog/static/15 ...