https://leetcode.com/problems/edit-distance/

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

用dp[i][j] 来表示 长度为 i 的 word1 经过 dp[i][j]次变换 可以得到长度为 j 的word2,那么我们主要考察两种情况,第一种是:word1[i] == word2[j],那么这个问题的规模便转换成了:dp[i][j] = dp[i-1][j-1]. 第二种情况是:word1[i] != word2[j],那么我们可以删除掉word1中的第 i 个字符,或者我们可以把 word1中的第 i 个字符换成与 word2[j] 相同的字符,或者我们还可以同时 删除 word1[i] 和 word2[j]. 于是状态转移方程为:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1.

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length(); vector<vector<int> > dp(m+, vector<int> (n+, )); for(int i=;i<=m;++i) dp[i][] = i;
for(int j=;j<=n;++j) dp[][j] = j; for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
if(word1[i-] == word2[j-]) {
dp[i][j] = min(dp[i-][j-], dp[i-][j]+);
}
else {
dp[i][j] = min(dp[i-][j], min(dp[i][j-], dp[i-][j-])) + ;
}
}
} return dp[m][n];
}
};

https://leetcode.com/problems/distinct-subsequences/

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

解题报告:用 dp[i][[j] 来表示长度为 i 的 S串 包含了几个 T串。分两种情况考虑,第一种:S[i] != T[j],那么问题转而变成求S[1,...i-1] 包含了几个 T[1...i]。因为S[i] 对解的个数不会产生影响。第二种: S[i] == T[j],那么一种可能是 S[1...i-1] 包含了 若干个 T[1...j-1],或者是S[1...i-1] 包含了 若干个T[1...j]。所以状态转移方程为:

dp[i][j] = dp[i-1][j] + dp[i-1][j-1] (if S[i] == T[j])

dp[i][j] = dp[i-1][j] (if S[i] != T[j])

class Solution {
public:
int numDistinct(string s, string t) {
int m = s.length(), n = t.length();
vector<vector<int> > dp(m+, vector<int>(n+, )); for(int i=;i<=m;++i) dp[i][] = ; for(int i=;i<=m;++i) {
for(int j=;j<=n;++j) {
if(s[i-] == t[j-]) dp[i][j] = dp[i-][j-] + dp[i-][j];
else dp[i][j] = dp[i-][j];
}
} return dp[m][n];
}
};

leetcode@ [72/115] Edit Distance & Distinct Subsequences (Dynamic Programming)的更多相关文章

  1. (LeetCode 72)Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. [Leetcode 72]编辑距离 Edit Distance

    [题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...

  3. LeetCode(72) Edit Distance

    题目 Given two words word1 and word2, find the minimum number of steps required to convert word1 to wo ...

  4. [leetcode]161. One Edit Distance编辑步数为一

    Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...

  5. [LeetCode] 161. One Edit Distance 一个编辑距离

    Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...

  6. ✡ leetcode 161. One Edit Distance 判断两个字符串是否是一步变换 --------- java

    Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串,判断他们是否是一步变换得到 ...

  7. [LeetCode#161] One Edit Distance

    Problem: Given two strings S and T, determine if they are both one edit distance apart. General Anal ...

  8. 【leetcode刷题笔记】Distinct Subsequences

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  9. [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

随机推荐

  1. SGU 180

    求逆序数对    归并排序 #include <cstdio> #include <cstring> #include <cmath> #include <a ...

  2. spring事物的传播行为

    1.spring事物的传播行为,主要是用来解决业务层拥有事物的方法,相互调用的问题. 2.声明事物, 在代码执行前,开启事务.代码执行完,提交事务 3.spring并没有提供事务具体的处理,而只是调用 ...

  3. SPRING IN ACTION 第4版笔记-第九章Securing web applications-001-SpringSecurity简介(DelegatingFilterProxy、AbstractSecurityWebApplicationInitializer、WebSecurityConfigurerAdapter、@EnableWebSecurity、@EnableWebMvcS)

    一.SpringSecurity的模块 At the least, you’ll want to include the Core and Configuration modules in your ...

  4. Android 应用开发性能优化完全分析

    1 背景 其实有点不想写这篇文章的,但是又想写,有些矛盾.不想写的原因是随便上网一搜一堆关于性能的建议,感觉大家你一总结.我一总结的都说到了很多优化注意事项,但是看过这些文章后大多数存在一个问题就是只 ...

  5. knowledge about apache

    http://wenku.baidu.com/link?url=6O51BQJdtFRFWDGszKfN3aK7IY92QTCpuc7miBhRLazXvxL5gXb18B_TqIdi3EruX1o_ ...

  6. CentOS7.1 Xshell 经常掉线 Connection closed by foreign host

    XShell如果经常对CentOS掉线,则VNC肯定连接不上 但是ping CentOS的IP又能ping通,主要原因还是因为sshd的设置问题 #进入ssh目录 cd /etc/ssh #修改ssh ...

  7. Git教程(3)命令行使用git简单示例

    基础 Git系统下的的文件有3种状态: 已修改(modified):已修改表示修改了文件,但还没保存到数据库中. 已暂存(staged) : 已暂存表示对一个已修改文件的当前版本做了标记,使之包含在下 ...

  8. C#中string.Format()和ToString()格式化方法

    C#数字格式化输出是我们在编程中经常需要处理的事情,那么这里向你介绍了一些C#数字格式化输出的例子,这样就会方便你来选择和比较,什么方式是比较适合自己项目的. int a = 12345678; C# ...

  9. MAC 上搭建lua环境

    一.下载并安装 (1)最新release版下载地址 http://www.lua.org/ftp/lua-5.3.1.tar.gz (2)编译 Building Lua is implemented ...

  10. Codeforces 374B - Inna and Nine

    原题地址:http://codeforces.com/problemset/problem/374/B 这道题没什么难度,但是考场上就是没写对.Round #220彰显了它的逗比性质——这道题的“标算 ...