HDU 5792 World is Exploding (树状数组)
World is Exploding
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5792
Description
Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a Ad.
##Input
The input consists of multiple test cases.
Each test case begin with an integer n in a single line.
The next line contains n integers A1,A2⋯An.
1≤n≤50000
0≤Ai≤1e9
##Output
For each test case,output a line contains an integer.
##Sample Input
4
2 4 1 3
4
1 2 3 4
##Sample Output
1
0
##Source
2016 Multi-University Training Contest 5
##题意:
找出有多少个四元组(a,b,c,d)满足a≠b≠c≠d,a Ad.
##题解:
下面将题意中的Aa Ad称为降序对.
首先会想到如果没有a≠b≠c≠d的限制,那么可以分别找到所有升序对和降序对数目相乘. 所以在有a≠b≠c≠d限制的情况下,需要考虑去重.
枚举元素num[i],考虑以num[i]为升序对右边界的情况:
1. 以num[i]为右边界的升序对个数为:1~i-1中比i小的个数.
2. 降序对:所有降序对 - 包含升序对中元素的降序对.
3. 包含升序对中元素的降序对:Sum((右边比num[j]小 + 左边比num[j]大) + (右边比num[i]小 + 左边比num[i]大)). (j为1~i-1中比num[i]小的数).
接下来的任务是:求出任一数左边比它大、小,右边比它大、小的数的个数各是多少.
这里可以用求逆序数的方法来求. 先将数据离散化.
注意TLE:尽量使用一次树状数组或线段树操作(O(nlogn)) + 多个O(n)的遍历来求得上述四个数组.
若分别使用2次甚至更多次的的线段树操作,将会由于常数太大而TLE(TLE代码附后,使用三次线段树操作).
分别使用left_large,left_small,right_small,right_large来表示上述的四个量. all_less为全部降序对数.
那么结果为:
left_small[i] * all_less - Σ(left_large[i]+right_small[i], left_large[j]+right_small[j]); (其中j为i左边比num[i]小的数,其个数为left_small[i]).
优化:若是直接用上述式子来求,则要再维护一次树状数组求比num[i]小的数的所涉及的重复降序对.
实际上,对于每个num[i],在减号右边left_large[i]+right_small[i]被计数的次数应该是i的右边比num[i]大的数的个数.
所以上式可优化为代码所示的式子:(总共仅需一次树状数组操作)
ans += left_small[i] * (all_less - left_large[i] - right_small[i]);
ans -= right_large[i] * (left_large[i] + right_small[i]);
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define mid(a,b) ((a+b)>>1)
#define eps 1e-8
#define maxn 55000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL num[maxn], tmpa[maxn];
LL c[maxn];
LL left_large[maxn], left_small[maxn];
LL right_small[maxn], right_large[maxn];
LL tol_cnt[maxn], tol_small[maxn], tol_large[maxn];
LL lowbit(LL x) {
return x & (-x);
}
void update(LL x, LL d) {
while(x <=n) {
c[x] += d;
x += lowbit(x);
}
}
LL get_sum(LL x) {
LL ret = 0;
while(x > 0) {
ret += c[x];
x -= lowbit(x);
}
return ret;
}
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d", &n) != EOF)
{
for(int i=1; i<=n; i++)
scanf("%d", &num[i]), tmpa[i] = num[i];
sort(tmpa+1, tmpa+1+n);
map<LL, LL> mymap;
LL sz = 0; mymap.clear();
for(int i=1; i<=n; i++) {
if(!mymap.count(tmpa[i])) {
sz++;
mymap.insert(make_pair(tmpa[i], sz));
}
}
for(int i=1; i<=n; i++) {
num[i] = mymap[num[i]];
}
memset(left_large, 0, sizeof(left_large));
memset(right_large, 0, sizeof(right_large));
memset(right_small, 0, sizeof(right_small));
memset(left_small, 0, sizeof(left_small));
memset(tol_small, 0, sizeof(tol_small));
memset(tol_large, 0, sizeof(tol_large));
memset(tol_cnt, 0, sizeof(tol_cnt));
memset(c, 0, sizeof(c));
for(int i=1; i<=n; i++) {
tol_cnt[num[i]]++;
}
for(int i=1; i<=sz; i++) {
tol_small[i] = tol_small[i-1] + tol_cnt[i-1];
}
for(int i=sz; i>=1; i--) {
tol_large[i] = tol_large[i+1] + tol_cnt[i+1];
}
LL all_less = 0;
for(int i=1; i<=n; i++) {
left_large[i] = get_sum(sz) - get_sum(num[i]);
right_large[i] = tol_large[num[i]] - left_large[i];
left_small[i] = get_sum(num[i]-1);
right_small[i] = tol_small[num[i]] - left_small[i];
all_less += right_small[i];
update(num[i], 1);
}
LL ans = 0;
for(int i=1; i<=n; i++) {
ans += left_small[i] * (all_less - left_large[i] - right_small[i]);
ans -= right_large[i] * (left_large[i] + right_small[i]);
}
printf("%I64d\n", ans);
}
return 0;
}
####TLE代码:(三次线段树操作)
``` cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define mid(a,b) ((a+b)>>1)
#define eps 1e-8
#define maxn 55000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL num[maxn], tmpa[maxn];
LL pre[maxn];
LL last[maxn];
struct Tree
{
int left,right;
LL cur;
LL sum;
}tree[maxn<<2];
void build(int i,int left,int right)
{
tree[i].left=left;
tree[i].right=right;
if(left==right){
tree[i].sum = 0;
tree[i].cur = 0;
return ;
}
int mid=mid(left,right);
build(i<<1,left,mid);
build(i<<1|1,mid+1,right);
tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].cur=tree[i<<1].cur+tree[i<<1|1].cur;
}
void update(int i,int x,LL d)
{
if(tree[i].left==tree[i].right){
tree[i].sum+=1;
tree[i].cur+=d;
return;
}
int mid=mid(tree[i].left,tree[i].right);
if(x<=mid) update(i<<1,x,d);
else update(i<<1|1,x,d);
tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].cur=tree[i<<1].cur+tree[i<<1|1].cur;
}
LL query(int i,int left,int right)
{
if(tree[i].left==left&&tree[i].right==right)
return tree[i].sum;
int mid=mid(tree[i].left,tree[i].right);
if(right<=mid) return query(i<<1,left,right);
else if(left>mid) return query(i<<1|1,left,right);
else return query(i<<1,left,mid)+query(i<<1|1,mid+1,right);
}
LL query2(int i,int left,int right)
{
if(tree[i].left==left&&tree[i].right==right)
return tree[i].cur;
int mid=mid(tree[i].left,tree[i].right);
if(right<=mid) return query2(i<<1,left,right);
else if(left>mid) return query2(i<<1|1,left,right);
else return query2(i<<1,left,mid)+query2(i<<1|1,mid+1,right);
}
map<LL, LL> mymap;
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d", &n) != EOF)
{
for(int i=1; i<=n; i++)
scanf("%d", &num[i]), tmpa[i] = num[i];
sort(tmpa+1, tmpa+1+n);
LL sz = 0; mymap.clear();
for(int i=1; i<=n; i++) {
if(!mymap.count(tmpa[i])) {
sz++;
mymap.insert(make_pair(tmpa[i], sz));
}
}
for(int i=1; i<=n; i++) {
num[i] = mymap[num[i]];
}
fill(pre, pre+n+1, 0);
fill(last, last+n+1, 0);
build(1, 1, sz);
for(int i=1; i<=n; i++) {
update(1, num[i], 1);
if(num[i] == sz) continue;
pre[i] = query(1, num[i]+1, sz);
}
build(1, 1, sz);
for(int i=n; i>=1; i--) {
update(1, num[i], 1);
if(num[i] == 1) continue;
last[i] = query(1, 1, num[i]-1);
}
LL all_less = 0;
for(int i=1; i<=n; i++) {
all_less += last[i];
}
build(1, 1, sz);
LL ans = 0;
for(int i=1; i<=n; i++) {
update(1, num[i], pre[i]+last[i]);
if(num[i] == 1) continue;
LL pre_num = query(1, 1, num[i]-1);
LL pre_sum = query2(1, 1, num[i]-1);
ans += pre_num * (all_less - pre[i] - last[i]) - pre_sum;
}
printf("%I64d\n", ans);
}
return 0;
}
HDU 5792 World is Exploding (树状数组)的更多相关文章
- HDU 5792 World is Exploding 树状数组+枚举
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5792 World is Exploding Time Limit: 2000/1000 MS (Ja ...
- hdu 5792 World is Exploding 树状数组
World is Exploding 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5792 Description Given a sequence ...
- hdu 5792 World is Exploding 树状数组+离散化+容斥
World is Exploding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU 5862 Counting Intersections(离散化+树状数组)
HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...
- hdu 5517 Triple(二维树状数组)
Triple Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化
http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...
- HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number ...
- HDU 5862 Counting Intersections (树状数组)
Counting Intersections 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Description Given ...
- hdu 5592 ZYB's Game 树状数组
ZYB's Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=55 ...
- HDU 1394 Minimum Inversion Number (树状数组求逆序对)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目让你求一个数组,这个数组可以不断把最前面的元素移到最后,让你求其中某个数组中的逆序对最小是多 ...
随机推荐
- textbox不支持Ctrl+A
http://stackoverflow.com/questions/5885739/why-are-some-textboxes-not-accepting-control-a-shortcut-t ...
- 1242. Werewolf(dfs)
1242 简单dfs 往孩子方向搜一遍 父母方向搜一遍 输入还搞什么字符串.. #include <iostream> #include<cstdio> #include< ...
- Android提供的LruCache类简介
分类: Android开发 2013-02-06 15:26 26733人阅读 评论(10) 收藏 举报 package android.util; import import /** * A cac ...
- Java知识点:琐碎知识点(2)
49个关键字一览 abstract default if private this boolean do implements protected throw break double import ...
- Java 7 语法新特性
一.二进制数字表达方式 原本整数(以60为例)能够用十进制(60).八进制(074).十六进制(0x3c)表示,唯独不能用二进制表示(111100),Java 7 弥补了这点. public clas ...
- 服务器安装Apache+Tomcat+Memcached共享Session的构架设计
网站集群部署解决计划 一. 计划目标 实现互动留言系统.后台发布系统的高可用性,有效解决高并发量对单台应用服务器的打击,确保应用服务器单点故障不影响系统正常运行. 二. 部署架 ...
- centos使用网易163yum源
CentOS系统自带的更新源的速度实在是慢,为了让CentOS6使用速度更快的YUM更新源,可以选择163(网易)的更新源. 1.下载repo文件 wget http://mirrors.163.co ...
- 【原创】利用Windows系统日志统计员工每天上下班考勤时间
利用Windows系统日志统计员工每天上下班考勤时间(命令行参数为统计月份): using System; using System.Collections.Generic; using System ...
- java web 学习八(HttpServletResponse对象2)
一.HttpServletResponse常见应用——生成验证码 1.1.生成随机图片用作验证码 生成图片主要用到了一个BufferedImage类,
- 《Python 学习手册4th》 第十四章 迭代器和解析
''' 时间: 9月5日 - 9月30日 要求: 1. 书本内容总结归纳,整理在博客园笔记上传 2. 完成所有课后习题 注:“#” 后加的是备注内容 (每天看42页内容,可以保证月底看完此书) “重点 ...