传送门

根据原图建一棵新的树。

把原图每一个环上除了深度最浅的点以外的点全部向深度最浅的点连边。

然后可以搞出来一个dfsdfsdfs。

这个时候我们就成功把问题转换成了对子树的询问。

然后就可以对权值分块用莫队做了注意如果不用分块而是用树状数组维护是O(nlognsqrt(n))的

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
inline void write(int x){
	if(!x){putchar('0');return;}
	if(x>9)write(x/10);
	putchar((x-x/10*10)^48);
}
const int N=1e6+5,K=1e6+5;
int n,m,tot=0,dfn[N],low[N],a[N],col[N],siz[K],tim[K][2],in[N],Siz[N],pred[N],sig,ans[N],sig1,mx=0;
vector<int>e[N];
struct Query{int l,r,lim,f,id;}q[N];
inline int getp(int x,int z){return (x-1)/z+1;}
inline void tarjan(int p,int fa){
	dfn[p]=low[p]=++tot,pred[tot]=p;
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!dfn[v])tarjan(v,p),low[p]=min(low[p],low[v]);
		else low[p]=min(low[p],dfn[v]);
	}
}
inline void dfs(int p,int fa){
	in[p]=++tot,Siz[p]=1;
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!in[v]&&low[v]>=dfn[p])dfs(v,p),Siz[p]+=Siz[v];
	}
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!in[v]&&low[v]<dfn[p])dfs(v,p),Siz[pred[low[v]]]+=Siz[v];
	}
}
inline void add(int pos){
	int upd=getp(pos,sig1);
	if(siz[pos]&1)--tim[upd][1],++tim[upd][0];
	else if(siz[pos])++tim[upd][1],--tim[upd][0];
	else ++tim[upd][1];
	++siz[pos];
}
inline void del(int pos){
	int upd=getp(pos,sig1);
	if(!(siz[pos]&1))++tim[upd][1],--tim[upd][0];
	else if(siz[pos]^1)--tim[upd][1],++tim[upd][0];
	else --tim[upd][1];
	--siz[pos];
}
inline bool cmp(const Query&a,const Query&b){return getp(a.l,sig)==getp(b.l,sig)?a.r<b.r:getp(a.l,sig)<getp(b.l,sig);}
int main(){
	n=read(),m=read(),sig=sqrt(n);
	for(int i=1;i<=n;++i)mx=max(mx,a[i]=read());
	sig1=sqrt(mx);
	for(int u,v,i=1;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
	tarjan(1,0),tot=0,dfs(1,0),m=read();
	for(int i=1;i<=n;++i)col[in[i]]=a[i];
	for(int i=1,v;i<=m;++i)q[i].f=read(),v=read(),q[i].l=in[v],q[i].r=in[v]+Siz[v]-1,q[i].lim=read(),q[i].id=i;
	int ql=1,qr=0,sum=0;
	sort(q+1,q+m+1,cmp);
	for(int i=1;i<=m;++i){
		while(qr<q[i].r)add(col[++qr]);
		while(ql>q[i].l)add(col[--ql]);
		while(qr>q[i].r)del(col[qr--]);
		while(ql<q[i].l)del(col[ql++]);
		sum=0;
		int pos=getp(q[i].lim,sig1);
		for(int j=1;j<pos;++j)sum+=tim[j][q[i].f];
		int L=(pos-1)*sig1+1,R=q[i].lim;
		for(int j=L;j<=R;++j){
			if(!siz[j])continue;
			sum+=(siz[j]&1)==q[i].f;
		}
		ans[q[i].id]=sum;
	}
	for(int i=1;i<=m;++i)write(ans[i]),puts("");
	return 0;
}

2018.10.29 bzoj4564: [Haoi2016]地图(仙人掌+莫队)的更多相关文章

  1. 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

    传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...

  2. 2018.10.29 NOIP训练 数据结构(带修改莫队)

    传送门 带修莫队板题. 直接按照经典写法做就行了. 代码

  3. luogu P3180 [HAOI2016]地图 仙人掌 线段树合并 圆方树

    LINK:地图 考虑如果是一棵树怎么做 权值可以离散 那么可以直接利用dsu on tree+树状数组解决. 当然 也可以使用莫队 不过前缀和比较难以维护 外面套个树状数组又带了个log 套分块然后就 ...

  4. LOJ#6504. 「雅礼集训 2018 Day5」Convex(回滚莫队)

    题面 传送门 题解 因为并不强制在线,我们可以考虑莫队 然而莫队的时候有个问题,删除很简单,除去它和前驱后继的贡献即可.但是插入的话却要找到前驱后继再插入,非常麻烦 那么我们把它变成只删除的回滚莫队就 ...

  5. loj#6517. 「雅礼集训 2018 Day11」字符串(回滚莫队)

    传送门 模拟赛的时候纯暴力竟然骗了\(70\)分-- 首先对于一堆\(g\)怎么计算概率应该很好想,用总的区间数减去不合法的区间数就行了,简而言之对\(g\)排个序,每一段长为\(d\)的连续序列的区 ...

  6. 2018.09.16 bzoj3757: 苹果树(树上莫队)

    传送门 一道树上莫队. 先用跟bzoj1086一样的方法给树分块. 分完之后就可以莫队了. 但是两个询问之间如何转移呢? 感觉很难受啊. 我们定义S(u,v)" role="pre ...

  7. 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)

    传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i​(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...

  8. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  9. 2018.10.29 NOIP2018模拟赛 解题报告

    得分: \(70+60+0=130\)(\(T3\)来不及打了,结果爆\(0\)) \(T1\):简单的求和(点此看题面) 原题: [HDU4473]Exam 这道题其实就是上面那题的弱化版,只不过把 ...

随机推荐

  1. unity3d休闲篮球类游戏《Flick Basketball 》上线项目完整源码

    下载地址: https://item.taobao.com/item.htm?id=576135964241

  2. NIO和IO(BIO)的区别及NIO编程介绍

    IO(BIO)和NIO的区别:其本质就是阻塞和非阻塞的区别. 阻塞概念:应用程序在获取网络数据的时候,如果网络传输数据很慢,那么程序就一直等着,直到传输完毕为止. 非阻塞概念:应用程序直接可以获取已经 ...

  3. TZOJ 4712 Double Shortest Paths(最小费用最大流)

    描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...

  4. TZOJ 1705 Dining(拆点最大流)

    描述 Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she wil ...

  5. vue生产环境部署总结

    参考:http://www.cnblogs.com/vipstone/p/6910255.html 1. vue项目根目录/config/index.js更改资源生成路径 assetsPublicPa ...

  6. MVC 的那点小事

    两年未见 一切从头再来.我猜到了故事的开头,找工作一如我想象的那般艰难,但是结果却比我预期的要好很多. 第一次开始用MVC 框架,比我想象的要简单的多,就像同事跟我说的,这只是个框架. 言归正传,前两 ...

  7. Java基本语法之动手动脑

    1.枚举类型 运行EnumTest.java 运行结果:false,false,true,SMALL,MEDIUM,LARGE 结论:枚举类型是引用类型,枚举不属于原始数据类型,它的每个具体值都引用一 ...

  8. swift - 百度地图API集成

    1.百度搜索  百度地图api 2. 选中之后选择, 看功能需求下载 API 3. 下载的API拖入项目,此处有坑, 如果只用地图或者 定位,这中写着 是 导航的SDK 别拖进去, 不然报错 怕搞错到 ...

  9. Mac git 终端使用

    终端有这个提示,这个按照命令 输入你的 git账号和邮箱就可以, 不然一直出这个提示 Your name and email address were configured automatically ...

  10. ABAP开发需要养成的习惯—处理规范,日期,sort,改结构

    sELECT select之后不要急着处理,最多用下sort还有delete adjacent,不用sy-subrc判断之后loop操作,要注意处理逻辑. sort一个好处是为了后面read tabl ...