POJ2104 K-th Number(整体二分)
嘟嘟嘟
整体二分是一个好东西。
理解起来还行。
首先,需要牢记的是,我们二分的是答案,也就是在值域上二分,同时把操作分到左右区间中(所以操作不是均分的)。
然后我就懒得讲了……
李煜东的《算法竞赛进阶指南》第二版中讲的特别好,有兴趣的OIer可以拿来读读。
这里贴一个板儿。
突然想说一嘴:这道题我们应该保证所有修改(赋值)操作在询问操作之前。虽然代码中没有明显的排序,但是因为读入的时候就先把赋值操作放进操作队列里了,所以二分的每一层,询问区间中一定先是修改,再是询问。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const int Max = 1e9;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, cnt = 0;
struct Node
{
int x, y, k, id;
}t[maxn << 1], tl[maxn << 1], tr[maxn << 1];
int ans[maxn];
int c[maxn];
int lowbit(int x) {return x & -x;}
void clear(int pos)
{
for(; pos <= n; pos += lowbit(pos))
if(c[pos]) c[pos] = 0;
else return;
}
void update(int pos, int d)
{
for(; pos <= n; pos += lowbit(pos)) c[pos] += d;
}
int query(int pos)
{
int ret = 0;
for(; pos; pos -= lowbit(pos)) ret += c[pos];
return ret;
}
void solve(int l, int r, int ql, int qr)
{
if(ql > qr) return;
if(l == r)
{
for(int i = ql; i <= qr; ++i)
if(t[i].id) ans[t[i].id] = l;
return;
}
int mid = (l + r) >> 1;
int id1 = 0, id2 = 0;
for(int i = ql; i <= qr; ++i)
{
if(!t[i].id)
{
if(t[i].k <= mid) update(t[i].x, 1), tl[++id1] = t[i];
else tr[++id2] = t[i];
}
else
{
int sum = query(t[i].y) - query(t[i].x - 1);
if(sum >= t[i].k) tl[++id1] = t[i];
else t[i].k -= sum, tr[++id2] = t[i];
}
}
for(int i = ql; i <= qr; ++i) if(!t[i].id && t[i].k <= mid) clear(t[i].x);
for(int i = 1; i <= id1; ++i) t[ql + i - 1] = tl[i];
for(int i = 1; i <= id2; ++i) t[ql + id1 + i - 1] = tr[i];
solve(l, mid, ql, ql + id1 - 1);
solve(mid + 1, r, ql + id1, qr);
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= n; ++i) t[++cnt].x = i, t[cnt].k = read(), t[cnt].id = 0;
for(int i = 1; i <= m; ++i)
t[++cnt].x = read(), t[cnt].y = read(), t[cnt].k = read(), t[cnt].id = i;
solve(-Max, Max, 1, cnt);
for(int i = 1; i <= m; ++i) write(ans[i]), enter;
return 0;
}
POJ2104 K-th Number(整体二分)的更多相关文章
- POJ2104 K-th Number [整体二分]
题目传送门 K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 69053 Accepted: 24 ...
- POJ2104 K-th Number(整体二分)
题解 又一次做这个题上一次用的是线段树上二分.这次用的是整体二分.结果: (第一个是整体二分) 整体二分就是对于所有查询都二分一个值.然后根据能不能成立把询问修改分成两部分,然后第二部分继承第一部分的 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]
有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...
- BZOJ3110:[ZJOI2013]K大数查询(整体二分)
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- BZOJ 3110 K大数查询 | 整体二分
BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- 【BZOJ-3110】K大数查询 整体二分 + 线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6265 Solved: 2060[Submit][Sta ...
- 静态区间第K小(整体二分、主席树)
题目链接 题解 主席树入门题 但是这里给出整体二分解法 整体二分顾名思义是把所有操作放在一起二分 想想,如果求\([1-n]\)的第\(k\)小怎么二分求得? 我们可以二分答案\(k\), \(O(n ...
- ZOJ 1112 Dynamic Rankings【动态区间第K大,整体二分】
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1112 题意: 求动态区间第K大. 分析: 把修改操作看成删除与增加 ...
- [ZJOI2013]K大数查询——整体二分
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是: 1 a b c:表示在第a个位置到第b个位置,每个位置加上一个数c 2 a b c:表示询问从第a个位置到第b个位置,第C大的数是多少. ...
随机推荐
- Net 使用UEditor笔记
WebForm使用Ueditor获取编辑器的值有两种方法:1.通过前台js 获取 function test() { alert(UE.getEditor('控件Id').getContent()); ...
- [日常] Go语言圣经-示例: 并发的目录遍历习题
练习 8.9: 编写一个du工具,每隔一段时间将root目录下的目录大小计算并显示出来. package main import ( // "filepath" "fla ...
- js-ES6学习笔记-对象的扩展
1.ES6允许直接写入变量和函数,作为对象的属性和方法.这种写法用于函数的返回值,将会非常方便.CommonJS模块输出变量,就非常合适使用简洁写法. var ms = {}; function ge ...
- HTTP 协议入门-笔记
原文参考http://mp.weixin.qq.com/s/czx0AHaItrJ-c49XDboIUg HTTP是基于TCP/IP协议的应用层协议,规定了客户端和服务端之间的通信格式,默认使用80 ...
- Flutter自定义布局套路
开始 在Android中我们要实现一个布局需要继承ViewGroup, 重写其中的onLayout和onMeasure方法. 其中onLayout负责给子控件设置布局区域, onMeaseure度量子 ...
- JAVA 实现 QQ 邮箱发送验证码功能(不局限于框架)
JAVA 实现 QQ 邮箱发送验证码功能(不局限于框架) 本来想实现 QQ 登录,有域名一直没用过,还得备案,好麻烦,只能过几天再更新啦. 先把实现的发送邮箱验证码更能更新了. 老规矩,更多内容在注释 ...
- Expo大作战(六)--expo开发模式,expo中exp命令行工具,expo中如何查看日志log,expo中的调试方式
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,将全部来与官网 我猜去全部机翻+个人 ...
- 简单了解Tomcat与OSGi的类加载器架构
前言: 本次博客主要是对Tomcat与OSGi的类加载器架构,所以就需要对tomcat.OSGi以及类加载机制有所了解 类加载可以在http://www.cnblogs.com/ghoster/p/7 ...
- AD域创建用户无法登录
怎么登录都无法登录 解决办法: 创建用户的时候 将用户下次登录时须更改密码的勾去掉 不然需要修改密码才可以登录
- web导出excel文件的几种方法
总的来说,两种方法:服务器端生成和浏览器端生成. 服务器端生成就是:根据用户请求,获取相应的数据,使用poi/jxl, jacob/jawin+excel,或是用数据拼html的table或是cvs纯 ...