P2014 选课
题目描述
在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?
输入输出格式
输入格式:
第一行有两个整数N,M用空格隔开。(1<=N<=300,1<=M<=300)
接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(1<=ki<=N, 1<=si<=20)。
输出格式:
只有一行,选M门课程的最大得分。
输入输出样例
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
13 f(i,j)代表以i为节点的子树(不选i)选j个附属元素产生的最大学分
状态转移方程为:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][j]+e[p].w);
(i-j-1的-1是因为从定义来看v这个节点本身没有被选啊)
再设个0 节点为总根,f(0,m)就是结果了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define mp make_pair
#define pb push_back
const int maxn = ;
#define mod 100003
const int N=; // name*******************************
int f[][];
int s[];
int n,m;
struct edge
{
int to,next,w;
} e[];
int tot=;
int Head[];
int ans=;
// function******************************
void add(int u,int v,int w)
{
e[++tot].to=v;
e[tot].next=Head[u];
e[tot].w=w;
Head[u]=tot;
}
int dfs(int u)
{
int cnt=;
for(int p=Head[u]; p!=-; p=e[p].next)
{
int v=e[p].to;
int t=dfs(v);
cnt+=t+;
FFor(i,min(m,cnt),)
For(j,,min(t,i-))
{
f[u][i]=max(f[u][i],f[u][i-j-]+f[v][j]+e[p].w);
}
}
return cnt;
} //***************************************
int main()
{
cin>>n>>m;
int a,b;
me(Head,-);
For(i,,n)
{
cin>>a>>b;
if(a==)
add(,i,b);
else
add(a,i,b);
}
dfs();
cout<<f[][m]; return ;
}
P2014 选课的更多相关文章
- 洛谷 P2014 选课(树形背包)
洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...
- 树形DP 洛谷P2014 选课
洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...
- P2014 选课(树形背包)
P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有 ...
- P2014 选课 题解(树形DP)
题目链接 P2014 选课 解题思路 树形动归,用\(f[i][j]\)表示以\(i\)为根,\(j\)个子节点(不包括自己)的最大学分 首先根据题意建图,用根节点\(0\)将森林连成树. 从根节点开 ...
- P2014选课
洛谷P2014选课 一道树形DP题. f[i][j]表示i个点选j门课程的最大学分. 递推方程: for(int a=n;a>0;a--)//总共选择多少 for(int b=0;b<a; ...
- 洛谷P2014——选课
题目:https://www.luogu.org/problemnew/show/P2014 树状DP,注意枚举当前子树中选几个时的边界. 代码如下: #include<iostream> ...
- [Luogu P2014]选课 (树形DP)
题面 传送门:https://www.luogu.org/problemnew/show/P2014 Solution 这是一道十分经典的树形DP题,这种类型的树形DP有一种很普遍的解法. 首先,观察 ...
- 洛谷P2014 选课 (树形dp)
10月1日更新.题目:在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分 ...
- 洛谷P2014 选课
首先分析题目,这是一道树形dp的题目,是树形背包类的问题,以为每门课的先修课只有一门,所以这一定可以 构成一个森林结构,于是我们可以设计一个虚拟的根节点作为森林的根. 状态转移方程如下 dp[v][k ...
随机推荐
- JS--我发现,原来你是这样的JS(引用类型不简单[上篇],且听我娓娓道来)
一.介绍 没错,这是第五篇,到了引用类型,这次要分成两次博文了,太多内容了,这是前篇,篇幅很长也很多代码,主要讲引用类型和常用的引用类型,代码试验过的,老铁没毛病. 坚持看坚持写,不容易不容易,希望大 ...
- 七夕——来自google的一点轻松
今天google在其hk主页推出了七夕主题的小游戏 先看看这个logo: 一共三轮 我的记录是7分21秒,还真是不容易
- Flutter:修改TextField的高度,以及无边框圆角
修改TextField的高度可以通过decoration: InputDecoration的contentPadding进行修改,代码如下 new TextField( decoration: Inp ...
- CSS样式----CSS样式表的继承性和层叠性(图文详解)
本文最初于2017-07-29发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. 本文重点 CSS的继承性 CSS的层叠性 计算权重 ...
- PowerDesigner Code和Name设置大写tablespace设置,PK设置
1,PowerDesigner Code和Name设置大写 tool>MODEL OPTIONS 2.从oracle数据库导出的表结构默认包含了tablespace 删除tablespace方法 ...
- angular、jquery、vue 的区别与联系
angular和jquery的区别 angular中是尽量避免操作DOM, angular是基于数据驱动, 适合做数据操作比较繁琐的项目,angular适用于单页面开发,是一个比较完善的mvvm框架, ...
- ISO8583组包、解包
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace POS. ...
- js 排序,去重
前几天 有一个需求要做一个 勾选的按钮 ,用的前端框架时 extjs . 需求是这样的:选择数据后点击勾选 会把数据 放到一个全局变量里,然后点击另外一个提交按钮 弹出一个窗口 加载这些已经勾选的 ...
- 中国将有可能在全球化的背景下收获新的人口红利:3星|《<财经>2019:预测与战略》
<财经>2019 :预测与战略 <财经>杂志的年刊.内容是针对2019年的预测分析.我认为<财经>的调查报告比较有深度,分析则不是我爱看的类型. 总体评价3星,有参 ...
- October 10th 2017 Week 41st Tuesday
If you focus on what you left behind you will never see what lies ahead. 如果你只顾回头看,那么你永远也看不见前方有什么. Ye ...