3438: 小M的作物

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit:
825  Solved: 368
[Submit][Status][Discuss]

Description

小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可以获得ai的收益,在B中种植可以获得bi的收益,而且,现在还有这么一种神奇的现象,就是某些作物共同种在一块耕地中可以获得额外的收益,小M找到了规则中共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以获得c2i的额外收益,所以,小M很快的算出了种植的最大收,但是他想要考考你,你能回答他这个问题么?

Input

第一行包括一个整数n
第二行包括n个整数,表示ai第三行包括n个整数,表示bi第四行包括一个整数m接下来m行,
对于接下来的第i行:第一个整数ki,表示第i个作物组合中共有ki种作物,
接下来两个整数c1i,c2i,接下来ki个整数,表示该组合中的作物编号。输出格式

Output

只有一行,包括一个整数,表示最大收益

Sample Input

3
4 2 1
2 3 2
1
2 3 2 1
2

Sample Output

11
样例解释A耕地种1,2,B耕地种3,收益4+2+3+2=11。
1<=k< n<=
1000,0 < m < = 1000 保证所有数据及结果不超过2*10^9。

HINT

 

Source

Kpmcup#0 By Greens

Solution

这不是傻逼题??

有种“文理分科”的既视感,反正也差不多TAT

又是最大全闭合图

对于单个作物  连S-->x  表示种在A中,容量为收益,  x-->T 表示种在B中容量为收益

对于多种集合 新建一个总点  S-->a' 表示都种在A,容量为收益, 再由a‘连所有集合中的点,  b’-->T 原理一样

最后ans=tot-mincut

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxm 3000010
#define maxn 3010
int n,m,tot;
struct EdgeNode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,);}
#define inf 0x7fffffff
int dis[maxn],cur[maxn],S,T;
bool bfs()
{
queue<int>q;
for (int i=S; i<=T; i++) dis[i]=-;
q.push(S); dis[S]=;
while (!q.empty())
{
int now=q.front(); q.pop();
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q.push(edge[i].to);
}
return dis[T]!=-;
}
int dfs(int x,int low)
{
if (x==T) return low;
int used=,w;
for (int i=cur[x]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[x]+)
{
w=dfs(edge[i].to,min(edge[i].cap,low-used));
edge[i].cap-=w; edge[i^].cap+=w; used+=w;
if (edge[i].cap) cur[x]=i; if (low==used) return used;
}
if (!used) dis[x]=-;
return used;
}
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
int a[maxn],b[maxn];
int main()
{
n=read();
for (int x,i=; i<=n; i++) a[i]=read(),tot+=a[i];
for (int x,i=; i<=n; i++) b[i]=read(),tot+=b[i];
m=read();
S=,T=n+*m+;
for (int i=; i<=n; i++) insert(S,i,a[i]),insert(i,T,b[i]);
for (int nn,x,y,i=; i<=m; i++)
{
nn=read(); x=read(),y=read(); tot+=x+y;
insert(S,++n,x); insert(++n,T,y);
for (int z,j=; j<=nn; j++) z=read(),insert(z,n,inf),insert(n-,z,inf);
}
printf("%d\n",tot-dinic());
return ;
}

【BZOJ-3438】小M的作物 最小割 + 最大权闭合图的更多相关文章

  1. BZOJ 3438: 小M的作物( 最小割 )

    orz出题人云神... 放上官方题解... 转成最小割然后建图跑最大流就行了... ---------------------------------------------------------- ...

  2. 洛谷 - P1361 - 小M的作物 - 最小割 - 最大权闭合子图

    第一次做最小割,不是很理解. https://www.luogu.org/problemnew/show/P1361 要把东西分进两类里,好像可以应用最小割的模板,其中一类A作为源点,另一类B作为汇点 ...

  3. 3438: 小M的作物[最小割]

    3438: 小M的作物 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1073  Solved: 465[Submit][Status][Discus ...

  4. HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)

    http://acm.hdu.edu.cn/showproblem.php?pid=3879 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 ...

  5. BZOJ 3438 小M的作物 & BZOJ 1877 [SDOI2009]晨跑

    我由衷地为我的朋友高兴.哈哈,yian,当你nick name破百上千时,再打“蒟蒻”就会被打的. 好的,说正事吧.请注意,这还是题解.但我发现,网络流实在是太套路了(怪不得这两年几乎销声匿迹).我们 ...

  6. 【POJ 2987】Firing (最小割-最大权闭合子图)

    裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...

  7. 【BZOJ-1391】order 最小割 + 最大全闭合图

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1334  Solved: 405[Submit][Statu ...

  8. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  9. BZOJ3438小M的作物——最小割

    题目描述 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物)(用1...n编号),现在,第i种作物种植在A中种植可 ...

随机推荐

  1. php 正则匹配中文(转)

    我使用正则表达式来匹配中问的时候,出现了无法匹配的问题,问题如下 PCRE does not support \L, \l, \N{name}, \U, or \u at offset 2 我原来的匹 ...

  2. some basic graph theoretical measures

    · mean characteristic path length calculated as the average length of the shortest path between two ...

  3. IE6 P标签下DIV无法inline-block

    IE6 P标签下的DIV标签无法inline-block,使其触发了hasLayout属性再用csshack 使其inline还是不行,始终要换行 解决:把div标签替换成非div标签,比如span等 ...

  4. 别出心裁的Linux系统调用学习法

    别出心裁的Linux系统调用学习法 操作系统与系统调用 操作系统(Operating System,简称OS)是计算机中最重要的系统软件,是这样的一组系统程序的集成:这些系统程序在用户对计算机的使用中 ...

  5. linux中vi编辑器的使用

    vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本 编辑器,这里只是简单地介绍一下它的用法和一小部分指令.由于对Unix及Linux系统的任 何版本,vi编辑器是完 ...

  6. 数据挖掘系列(9)——BP神经网络算法与实践

    神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...

  7. 新时代的coder如何成为专业程序员

    在移动互联网"泛滥"的今天,越来越多非专业(这里的非专业指的是非计算机专业毕业的程序员)程序员加入到了IT行业中来了,可能是因为移动互联网的火爆导致程序员容易就业而且工资很高,可能 ...

  8. 微信公众平台SDK

    微信公众平台网址:https://mp.weixin.qq.com/ 服务号说明:给企业和组织提供更强大的业务服务与用户管理能力,帮助企业快速实现全新的公众号服务平台. .NETSDK: Loogn. ...

  9. 后缀树(BZOJ3238TLE)

    #include<cstdio> #include<cstring> #define LL long long ],stt[]; LL ans; ,sidcnt,lastcre ...

  10. android之Activity回传数据

    约定:当Activity发生跳转时将原来的Activity成为父Activity,将新出现的Activity成为子Activity. 情景设置 下面是个发短信的Activity 当我们点击图中的+按钮 ...