BZOJ3759: Hungergame 博弈论+线性基
学了新的忘了旧的,还活着干什么
题意:一些盒子,每步可选择打开盒子和取出已打开盒子的任意多石子,问先手是否必胜
搬运po姐的题解:
先手必胜的状态为:给出的数字集合存在一个异或和为零的非空子集,则先手必胜
证明:
首先我们有状态A:当前的所有打开的箱子中的石子数异或和为零,且所有关闭的箱子中的石子数的集合中不存在一个异或和为零的非空子集
易证A状态时先手必败
先手有两种操作:
1.从一个打开的箱子中拿走一些石子 那么根据Nim的结论 后手可以同样拿走一些石子使状态恢复为A状态
2.打开一些箱子 由于未打开的箱子中不存在一个异或和为零的非空子集 所以打开后所有打开的箱子中石子数异或和必不为零 于是后手可以拿走一些石子使状态恢复为A状态
故此时先手必败
那么如果初始不存在一个异或和为零的非空子集,那么初始状态满足状态A,先手必败
如果初始存在一个异或和为零的非空子集,那么先手一定可以打开所有的异或和为零的子集,使剩余箱子不存在异或和为零的非空子集,将状态A留给后手,先手必胜
然后就是判断是否有子集异或为0,线性基求一下。
update:其实当n>32时可以直接判断先手胜,因为int范围考虑每一个二进制位一定会有异或为0的
#include<bits/stdc++.h>
using namespace std;
#define N 35
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[N],b[N];
bool gauss(){
memset(b,,sizeof(b));
for(int i=;i<=n;i++){
for(int j=;j>=;j--)
if(a[i]>>j&){
if(!b[j]){b[j]=a[i];break;}
else a[i]^=b[j];
}
if(!a[i])return ;
}
return ;
}
int main(){
int T=read();
while(T--){
n=read();
for(int i=;i<=n;i++)a[i]=read();
puts(gauss()?"Yes":"No");
}
return ;
}
3759: Hungergame
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 182 Solved: 131
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
5
18 11 16 19 15
5
18 12 17 10 18
5
17 7 1 10 1
5
19 5 16 19 8
5
18 18 7 4 9
Sample Output
Yes
Yes
Yes
Yes
HINT
BZOJ3759: Hungergame 博弈论+线性基的更多相关文章
- darkbzoj #3759. Hungergame 博弈论 线性基 NIM
LINK:Hungergame 放上一道简单题 复习一下. 考虑每次可以打开任意多个盒子 如果全打开了 那么就是一个NIM游戏了. 如果发现局面是异或为0的时候此时先手必胜了. 考虑局面不全体异或为0 ...
- bzoj 3759 Hungergame 博弈论+线性基
和nim游戏类似 易证必败状态为:当前打开的箱子中石子异或和为0,没打开的箱子中不存在一个子集满足异或和为0 因为先手无论是取石子还是开箱子,后手都可以通过取石子来使状态变回原状态 所以只需判定是否有 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- Nowcoder Playing Games ( FWT 优化 DP && 博弈论 && 线性基)
题目链接 题意 : 给出 N 个数.然后问你最多取出多少石子使得在 NIM 博弈中.后手必胜 分析 : Nim 博弈模型,后手必胜当且仅当各个堆的石子的数目的异或和为 0 转化一下.变成最少取多少石 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- 【BZOJ1299】巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒(博弈论,线性基) 题面 BZOJ 题解 \(Nim\)博弈的变形形式. 显然,如果我们不考虑拿巧克力棒出来的话,这就是一个裸的\(Nim\)博弈. 但是现在可以加入巧克力 ...
- BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...
- BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...
- [BZOJ1299]巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒 Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. ...
随机推荐
- 【Java EE 学习 19】【使用过滤器实现全站压缩】【使用ThreadLocal模式解决跨DAO事务回滚问题】
一.使用过滤器实现全站压缩 1.目标:对网站的所有JSP页面进行页面压缩,减少用户流量的使用.但是对图片和视频不进行压缩,因为图片和视频的压缩率很小,而且处理所需要的服务器资源很大. 2.实现原理: ...
- SQL语法中的子查询Subqueries
记一下样子. 明白它的应用场景. SELECT account_id, product_cd, cust_id, avail_balance FROM account WHERE open_emp_i ...
- macosx安装MySQLdb
折腾了半天,记录一下. 先按照这个步骤安装mysql-python 如果python setup.py install 时候出现clang 错误,运行 python -E setup.py insta ...
- 新浪微博的账号登录及api操作
.sina.php <?php /** * PHP Library for weibo.com * * @author */ class sinaPHP { function __constru ...
- memcached的最佳实践方案
基本问题 1.memcached的基本设置 1)启动Memcache的服务器端 # /usr/local/bin/memcached -d -m 10 -u root -l 192.168.0.200 ...
- 学习设计接口api(转)
介绍 先说说啥是 Api 吧,以下摘自百度百科: API (Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供应用程序与开发人员基于 ...
- UIPopoverController 的使用
#import "ViewController.h" #import "RYColorSelectController.h" #import "RYM ...
- 《数据结构与算法分析》学习笔记(三)——链表ADT
今天简单学习了下链表,待后续,会附上一些简单经典的题目的解析作为学习的巩固 首先要了解链表,链表其实就是由一个个结点构成的,然后每一个结点含有一个数据域和一个指针域,数据域用来存放数据,而指针域则用来 ...
- SQLServer批量创建有规则的数据
根据需求要生成从kkk001,kkk002开始的100个递增账号 手插要死人的,用SQL脚本轻松完成: declare @a int ) ) begin ) ) end declare:申明变量, @ ...
- 用DOM4J解析XML文件案例
用DOM4J解析XML文件案例,由于DOM4J不像JAXP属于JAVASE里,所以如果要使用DOM4J,则必须额外引入jar包,如图: