dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i)

令f[i]=sum[i]+i,c=1+l

则dp[i]=min(dp[j]+(f[i]-f[j]-c)^2)

1.证明决策单调性

假设在状态i处的k决策优与j决策,即

dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2

则对于i后的所有状态t,要证明决策单调性

即dp[k]+(f[t]-f[k]-c)^2<=dp[j]+(f[t]-f[j]-c)^2

只要证

dp[k]+(f[i]+v-f[k]-c)^2<=dp[j]+(f[i]+v-f[j]-c)^2

只要证

dp[k]+(f[i]-f[k]-c)^2+2*v*(f[i]-f[k]-c)+v^2<=dp[j]+(f[i]-f[j]-c)^2+2*v*(f[i]-f[j]-c)+v^2

只要证

2*v*(f[i]-f[k]-c)<=2*v*(f[i]-f[j]-c)

即f[k]>=f[j](显然)

证明完毕

2.求斜率方程

因为dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2

展开

dp[k]+f[i]^2-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]+f[i]^2-2*f[i]*(f[j]+c)+(f[j]+c)^2

即

dp[k]-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]-2*f[i]*(f[j]+c)+(f[j]+c)^2

即(dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i]

f[i]是单调递增的,我们使用队列维护一个下凸壳,每次取出队头作为决策

加入决策i时,令队尾为q[r],前一个为q[r-1]

满足斜率(q[r],i)<斜率(q[r-1],q[r])时,显然队尾是无效的,将其弹出

  

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 56789
ll n,l,s[maxn],dp[maxn];
int head,tail,q[maxn];
double slove(int k,int j)
{
return (dp[k]-dp[j]+(s[k]+l)*(s[k]+l)-(s[j]+l)*(s[j]+l))/(2.0*(s[k]-s[j]));
}
int main()
{
scanf("%lld%lld",&n,&l);
for(int i=1; i<=n; i++)
{
scanf("%lld",&s[i]);
s[i]+=s[i-1];
}
for(int i=1; i<=n; i++)s[i]+=i;
l++;
for(int i=1; i<=n; i++)
{
while(head<tail&&slove(q[head+1],q[head])<=s[i])
head++;
dp[i]=dp[q[head]]+(s[i]-s[q[head]]-l)*(s[i]-s[q[head]]-l);
while(head<tail&&slove(i,q[tail])<slove(q[tail],q[tail-1]))
tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}

  

BZOJ-3-1010: [HNOI2008]玩具装箱toy-斜率优化DP的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  2. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  3. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  4. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

  10. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

随机推荐

  1. python网络爬虫笔记(八)

    一.pthon 序列化json格式 1.将python内置对象转换成json 模块,dumps()方法返回的是一个str,内容是标准的JSON,dump()方法可以直接吧JSON写入一个file-li ...

  2. 直径上的乱搞 bzoj1999求树直径上的结点+单调队列,bzoj1912负权树求直径+求直径边

    直径上的乱搞一般要求出这条直径上的点集或者边集 bzoj1999:对直径上的点集进行操作 /* 给出一颗树,在树的直径上截取长度不超过s的路径 定义点u到s的距离为u到s的最短路径长度 定义s的偏心距 ...

  3. bitset用法详解

    参见此博客: https://www.cnblogs.com/magisk/p/8809922.html

  4. 20165314 2016-2017- 3《Java程序设计》第2周学习总结

    20165314 2016-2017- 3<Java程序设计>第2周学习总结 教材学习内容总结 byte<short<char<int<long<float& ...

  5. yii2 Menu组件的使用

    1.首先引入类 use yii\widgets\Menu; 2.配置组件 <?php echo Menu::widget([ //ul的样式以及相应的属性 'options' => ['c ...

  6. Git使用一:git客户端安装与创建用户

    1.下载并安装Git和图形客户端TortoiseGit Git官网:https://gitforwindows.org/ TortoiseGit官网: https://tortoisegit.org/ ...

  7. C++ friend友元函数和友元类(转)

    一个类中可以有 public.protected.private 三种属性的成员,通过对象可以访问 public 成员,只有本类中的函数可以访问本类的 private 成员.现在,我们来介绍一种例外情 ...

  8. Aws云服务EMR使用

    Aws云服务EMR使用 创建表结构 创建abc库下的abc_user_i表字段s3://abc-server/abc-emr/shell/ABC_USER_HIVE.q: EXTERNAL 指定为外部 ...

  9. DBEntityEntry类

    DBEntityEntry是一个重要的类,可用于检索有关实体的各种信息.您可以使用DBContext的Entry方法获取特定实体的DBEntityEntry实例. DBEntityEntry允许您访问 ...

  10. CDOJ 1964 命运石之门【最短路径Dijkstra/BFS】

    给定数字n,m(1<=n,m<=500000) 将n变为n*2花费2,将n变为n-3花费3,要求过程中所有数字都在[1,500000]区间内. 求将n变为m的最少花费 思路:建图 将每个数 ...