题目链接

【洛谷传送门】
【LOJ传送门】

题目大意

给定一棵树,每次选取树上的一个点集,要求点集中的每个点不能是另一个点的祖先,选出点集的代价为点集中权值最大点的权值,问将所有点都选一遍的最小代价为多少。
(题目大意来自洛谷题解某一篇)

题解

分析一下这一道题目。
首先,因为不能存在祖先关系,那么在一条链上的所有点一定是要分开来取的。
那么很显然,根必须一个点一个集合,那么在递归子树,同样的操作,把子树独立的递归,然后合并子树内的最大值。

代码

#include <bits/stdc++.h>
#define ms(a, b) memset(a, b, sizeof(a))
#define ll long long
#define ull unsigned long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define db double
#define Pi acos(-1)
#define eps 1e-8
#define pq priority_queue
#define N 200005
using namespace std;
template <typename T> T power(T x, T y, T mod) { x %= mod; T res = 1; for (; y; y >>= 1) { if (y & 1) res = (res * x) % mod; x = (x * x) % mod; } return res; }
template <typename T> void read(T &x) {
    x = 0; T fl = 1; char ch = 0;
    for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') fl = -1;
    for (; ch >= '0' && ch <= '9'; ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
    x *= fl;
}
template <typename T> void write(T x) {
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10); putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) { write(x); puts(""); }
vector<int> g[N];
int n, val[N], id[N], tot;
pq<int> q[N];
void merge(int &a, int &b) {
    if (q[a].size() < q[b].size()) swap(a, b);
    int tot = 0; static int c[N];
    while (!q[b].empty()) c[++ tot] = max(q[a].top(), q[b].top()), q[a].pop(), q[b].pop();
    for (int i = 1; i <= tot; i ++) q[a].push(c[i]);
}
void dfs(int u) {
    id[u] = ++ tot;
    for (int i = 0; i < g[u].size(); i ++) {
        int v = g[u][i];
        dfs(v);
        merge(id[u], id[v]);
    }
    q[id[u]].push(val[u]);
}
int main() {
    tot = 0;
    read(n);
    for (int i = 1; i <= n; i ++) read(val[i]);
    for (int i = 2, fa; i <= n; i ++) read(fa), g[fa].push_back(i);
    dfs(1);
    ll ans = 0;
    while (!q[id[1]].empty()) { ans += q[id[1]].top(); q[id[1]].pop(); }
    writeln(ans);
    return 0;
}

「洛谷5290」「LOJ3052」「十二省联考 2019」春节十二响【启发式合并】的更多相关文章

  1. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  2. LOJ #3049. 「十二省联考 2019」字符串问题

    LOJ #3049. 「十二省联考 2019」字符串问题 https://loj.ac/problem/3049 题意:给你\(na\)个\(A\)类串,\(nb\)个\(B\)类串,\(m\)组支配 ...

  3. 【LOJ】#3051. 「十二省联考 2019」皮配

    LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校 ...

  4. 「十二省联考 2019」皮配——dp

    题目 [题目描述] #### 题目背景一年一度的综艺节目<中国好码农>又开始了.本季度,好码农由 Yazid.Zayid.小 R.大 R 四位梦想导师坐镇,他们都将组建自己的梦想战队,并率 ...

  5. 「十二省联考 2019」字符串问题——SAM+DAG

    题目 [题目描述] Yazid 和 Tiffany 喜欢字符串问题.在这里,我们将给你介绍一些关于字符串的基本概念. 对于一个字符串 $S$, 我们定义 $\lvert S\rvert$ 表示 $S$ ...

  6. 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】

    题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...

  7. LOJ 3049: 洛谷 P5284: 「十二省联考 2019」字符串问题

    题目传送门:LOJ #3049. 题意简述: 给定一个长度为 \(n\) 的母串 \(S\). 有 \(n_a\) 个 A 类串,都是 \(S\) 的子串,以区间的形式给出. 有 \(n_b\) 个 ...

  8. LOJ#3048. 「十二省联考 2019」异或粽子 Trie

    原文链接www.cnblogs.com/zhouzhendong/p/LOJ3048.html 题解 $O(n\log^2 {a_i})$ 的做法比较简单: 1. 求出第 k 大的是什么: 二分答案, ...

  9. 【LOJ 3049】「十二省联考 2019」字符串问题

    这个D1T2绝对有毒... 首先我们构造一把反串的后缀自动机. 然后我们就需要找到每一个子串在SAM上的节点. 这个可以通过扫描线+树上倍增处理. 首先我们把所有的子串按照左端点排序, 然后从右往左扫 ...

随机推荐

  1. Python_服务器与多客户端通信、UDP协议、pycharm打印带颜色输出、时间同步的机制

    1.服务器与多客户端通信 import socket # 创建tcp socket的套接字 sk = socket.socket() # bind sk.bind(('127.0.0.1',8080) ...

  2. cent6.x配置主机名及静态网络

    # 修改网卡名为NAME="eth0" [root@jenkins ~]# -persistent-net.rules # This file was automatically ...

  3. C语言操作WINDOWS系统存储区数字证书相关函数详解及实例

     C语言操作WINDOWS系统存储区数字证书相关函数详解及实例 以下代码使用C++实现遍历存储区证书及使用UI选择一个证书 --使用CertOpenSystemStore打开证书存储区. --在循环中 ...

  4. Python3练习题 006 冒泡排序

    import random a = [random.randint(1,100) for i in range(10)]def bu(target): length = len(target) whi ...

  5. PropertyChangeSupport 监听器模式的应用

    PropertyChangeSupport 类实现的监听器功能 ,它是java jdk自带的一个类,用于监听某个对象属性的改变来触发相应信息,具体看代码介绍 import java.beans.Pro ...

  6. CentOS7 下面安装jdk1.8

    1. 卸载已有的jdk rpm -qa |grep jdk |xargs rpm -e --nodeps 2. 使用xftp上传 jdk 的文件我这里上传的是 jdk-8u121-linux-x64. ...

  7. Flutter上拉加载下拉刷新---flutter_easyrefresh

    前言 Flutter默认不支持上拉加载,下拉刷新也仅仅支持Material的一种样式.Android开发使用过SmartRefreshLayout的小伙伴都知道这是一个强大的刷新UI库,集成了很多出色 ...

  8. Android——MaterialDesign之四 FloatingActionButton、Snackbar、CoordinaterLayout

    FloatingActionButton 悬浮按钮,默认colorAccent来作为按钮的颜色 <android.support.design.widget.FloatingActionButt ...

  9. 【转】使用 lsof 查找打开的文件

      在 UNIX® 环境中,文件无处不在,这便产生了一句格言:“任何事物都是文件”.通过文件不仅仅可以访问常规数据,通常还可以访问网络连接和硬件.在有些情况下,当您使用 ls 请求目录清单时,将出现相 ...

  10. 通过view实现rest api接口

    Django rest framwork之view 基于Django的View实现Json数据的返回: # _*_ encoding:utf-8 _*_ __author__ = 'LYQ' __da ...