Tychonov Theorem
(Remark: The proof presented in this post is a reorganization and interpretation of that given by James Munkres in his book "Topology".)
Theorem 37.3 (Tychonov Theorem) The product of arbitrary number of compact spaces is compact in the product topology, i.e.
\[
X = \prod_{i \in I} X_i
\]
is compact if \(X_i\) is compact for all \(i \in I\).
Basic thoughts about proving the Tychonov Theorem
- Although compactness is originally defined via finite open covering, it has another equivalent formulation via finite intersection property (FIP) of a collection of closed sets. The compactness of the product space \(X\) will be proved by following this FIP route.
- A strict partial order based on the set inclusion relation will be assigned to the system or superset of collections of subsets in the product space which have the FIP. It can be envisioned that every such collection of subsets dwells in a chain which has an upper bound. The Zorn's Lemma can then be used to prove the existence of a maximal collection \(\mathcal{D}\).
- For any collection \(\mathcal{A}\) of subsets in the product space \(X\) having the FIP, a point \(\vect{x}\) in \(X\) will be constructed with each of its component belonging to the intersection of the closures of the corresponding component of each subset in \(\mathcal{A}\).
- The properties of the maximal collection \(\mathcal{D}\) will be explored, which can be used to prove that any subbasis and hence basis element containing the constructed \(\vect{x}\) belongs to \(\mathcal{D}\). Based on these conclusions, this \(\vect{x}\) can be proved to be in the intersection of all the elements in \(\mathcal{A}\) and the Tychonov theorem is proved.
Compactness and finite intersection property
Lemma 26.9 A topological space \(X\) is compact if and only if every collection \(\mathcal{F}\) of closed sets in \(X\) with the finite intersection property has a nonempty intersection.
Proof: This lemma will be proved by using reduction to absurdity.
Prove in the forward direction
Let \(X\) be a compact space. For any of its opening covering \(\{U_i\}_{i \in I}\), there exists an finite sub-covering \(\{U_{i_k}\}_{k=1}^n\), from which we have
\[
\bigcap_{i \in I} U_i^c = \varPhi
\]and
\[
\bigcap_{k=1}^n U_{i_k}^c = \varPhi,
\]where each \(U_i^c\) is a closed set in \(X\). From this we learns that if a topological space \(X\) is compact, for any collection of closed sets in \(X\) having an empty intersection, it must have a finite sub-collection, which also has an empty intersection.
Then, assume that there exists a collection \(\mathcal{F}\) of closed sets with their intersection being empty. \(\mathcal{F}\) must have a finite sub-collection which also has an empty intersection. However, this contradicts the fact that \(\mathcal{F}\) should have the FIP. Therefore, every collection \(\mathcal{F}\) of closed sets must has a nonempty intersection.
Prove in the inverse direction
Assume \(X\) is not compact, then there exists an open covering \(\{U_i\}_{i \in I}\) of \(X\), which has no finite sub-covering. From this, we have
\[
\bigcap_{i \in I} U_i^c = \varPhi
\]
and for any of its finite sub-collections \(\{U_{i_k}\}_{k = 1}^n\),
\[
\bigcap_{k = 1}^n U_{i_k}^c \neq \varPhi.
\]
Therefore, the collection of closed sets \(\{U_i^c\}_{i \in I}\) has the FIP. According to the given condition, the intersection of all \(U_i^c\) should be nonempty, which contradicts the conclusion derived from the assumption.
Summarizing the above two steps, Lemma 26.9 is proved.
Construction of the maximal collection \(\mathcal{D}\)
Lemma 37.1 Let \(X\) be a set and \(\mathcal{A}\) be a collection of subsets of \(X\) having the finite intersection property. Then there exists a collection \(\mathcal{D}\) of subsets of \(X\) such that \(\mathcal{A} \subset \mathcal{D}\) and \(\mathcal{D}\) has the finite intersection property. In addition, there is no larger collection, which also has the finite intersection property, containing \(\mathcal{D}\).
Proof: Let \(\mathbb{A}\) be a superset, each element of which has the FIP and contains the collection \(\mathcal{A}\). Assign this superset \(\mathbb{A}\) with a strict partial order based on the proper set inclusion relation \(\subsetneq\). Then let \(\mathbb{B}\) be a subset of \(\mathbb{A}\), which itself is also a superset, such that \(\mathbb{B}\) is simply ordered by \(\subsetneq\).
Let \(\mathcal{C}\) be the union of all the elements in \(\mathbb{B}\), i.e.
\[
\mathcal{C} = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B}.
\]
Next, we need to show that \(\mathcal{C}\) belongs to \(\mathbb{A}\) and is an upper bound of the chain \(\mathbb{B}\).
The upper bound property based on the proper set inclusion relation has already been ensured by the construction of \(\mathcal{C}\) via the union operation. We only need to prove \(\mathcal{C} \in \mathbb{A}\), which requires the following two conditions to be fulfilled:
\(\mathcal{C}\) contains \(\mathcal{A}\).
This is obvious, because for every \(\mathcal{B}\) in \(\mathbb{B}\), \(\mathcal{A}\) is contained in \(\mathcal{B}\) and \(\mathcal{B}\) is contained in \(\mathcal{C}\).
\(\mathcal{C}\) has the FIP.
Let \(\{C_1, \cdots, C_n\}\) be a finite collection selected from \(\mathcal{C}\). Because \(\mathcal{C}\) is the union of all the collections in the superset \(\mathbb{B}\), there exists a \(\mathcal{B}_i\) in \(\mathbb{B}\) such that \(C_i \in \mathcal{B}_i\) for all \(i = 1, \cdots, n\). Then \(\{\mathcal{B}_1, \cdots, \mathcal{B}_n\}\) is a finite chain which must have a largest element and we here let it be \(\mathcal{B}_k\). Hence we have \(C_i \in \mathcal{B}_k\) for all \(i = 1, \cdots, n\).
Because each element of \(\mathbb{B}\) including \(\mathcal{B}_k\) is also an element of \(\mathbb{A}\) which has the FIP and the finite collection \(\{C_1, \cdots, C_n\}\) is contained in \(\mathcal{B}_k\), \(\mathcal{C}\) has the FIP.
Summarizing the above, we know that \(\mathcal{C}\) is really an upper bound in \(\mathbb{A}\) of the chain \(\mathbb{B}\). According to the Zorn's Lemma, there is a maximal element, let it be \(\mathcal{D}\), such that \(\mathcal{D}\) has the FIP and contains \(\mathcal{A}\).
Properties of the maximal collection \(\mathcal{D}\)
Lemma 37.2 Let \(X\) be a set and \(\mathcal{D}\) be a collection of subsets of \(X\) which is maximal with respect to the FIP and strict partial order based on the proper set inclusion relation. Then:
- Any finite intersection of elements of \(\mathcal{D}\) is also an element of \(\mathcal{D}\).
- If a subset of \(X\) intersects every element of \(\mathcal{D}\), this subset is also an element of \(\mathcal{D}\).
Proof:
Let \(B\) be the finite intersection of elements in \(\mathcal{D}\). Let's see if we can construct a collection which is larger than \(\mathcal{D}\) by appending the element \(B\) to the collection \(\mathcal{D}\). If this is not achievable, we know that the appended element \(B\) must belong to \(\mathcal{D}\).
Let \(\mathcal{E} = \mathcal{D} \cup \{B\}\). Because \(\mathcal{D} \subset \mathcal{E}\), \(\mathcal{D}\) and \(\mathcal{E}\) belong to the same chain. Then we check if \(\mathcal{E}\) has the FIP.
When the finite number of elements extracted from \(\mathcal{E}\) are all selected from \(\mathcal{D}\), their intersection is not empty due to the FIP of \(\mathcal{D}\).
When the selected finite number of elements include \(B\), their intersection has the following formulation:
\[
D_1 \cap \cdots \cap D_m \cap B,
\]
where \(D_1, \cdots, D_m \in \mathcal{D}\).
Because \(B\) is also a finite intersection of elements in \(\mathcal{D}\), \(D_1 \cap \cdots \cap D_m \cap B\) is a finite intersection of elements in \(\mathcal{D}\) as well, which is of course not empty.
Summarizing the above, we know that \(\mathcal{E}\) has the FIP and \(\mathcal{D} \subset \mathcal{E}\). Because \(\mathcal{D}\) is a maximal element, we have \(\mathcal{D} = \mathcal{E}\). Therefore, \(B \in \mathcal{D}\).
Let \(A\) be the subset of \(X\) which intersects every element of \(\mathcal{D}\). Similarly as above, let \(\mathcal{E} = \mathcal{D} \cup \{A\}\) and we have the following two facts:
When the finite number of elements are all selected from \(\mathcal{D}\), their intersection is nonempty due to the FIP of \(\mathcal{D}\).
When the selected finite number of elements include \(A\), their intersection has the following formulation:
\[
D_1 \cap \cdots \cap D_m \cap A.
\]
According to the already proved conclusion 1 in this lemma, \(D = D_1 \cap \cdots \cap D_m\) is also an element of \(\mathcal{D}\). Because \(A \cap D \neq \varPhi\) from the given condition, the intersection \(D_1 \cap \cdots \cap D_m \cap A\) is not empty.
Summarizing the above, we know that \(\mathcal{E}\) has the FIP and is larger than \(\mathcal{D}\). Because \(\mathcal{D}\) is a maximal element, we have \(\mathcal{D} = \mathcal{E}\) and \(A \in \mathcal{D}\).
Tychonov Theorem
Finally, we come to the proof of the Tychonov Theorem.
Proof: Let \(\{X_i\}_{i \in I}\) be a collection of compact spaces. Their product is
\[
X = \prod_{i \in I} X_i.
\]
Let \(\mathcal{A}\) be any collection of subsets of \(X\) having the FIP. Then the closures of the elements in \(\mathcal{A}\) also have the FIP. As long as we can prove
\[
\bigcap_{A \in \mathcal{A}} \bar{A} \neq \varPhi,
\]
\(X\) is compact according to Theorem 26.9.
According to Lemma 37.1, there exists a maximal element \(\mathcal{D}\) in the sense of FIP and strict partial order based on the proper set inclusion relation. Because \(\mathcal{D}\) contains \(\mathcal{A}\), if
\[
\bigcap_{D \in \mathcal{D}} \bar{D} \neq \varPhi,
\]
there is also
\[
\bigcap_{A \in \mathcal{A}} \bar{A} \neq \varPhi.
\]
Let \(\pi_i: X \rightarrow X_i\) for all \(i \in I\) be the projection map. Because \(\mathcal{D}\) has the FIP, for a specific index \(i\), the collection of the component sets \(\{\pi_i(D) \vert D \in \mathcal{D} \}\) also has the FIP.
Because the component space \(X_i\) is compact, according to Theorem 26.9, there exists an \(x_i\) such that
\[
\begin{equation}
x_i \in \bigcap_{D \in \mathcal{D}} \overline{\pi_i(D)} \quad (\forall i \in I).
\label{eq:x_i_range}
\end{equation}
\]
Let all these \(\{x_i\}_{i \in I}\) form an element \(\vect{x}\) in the product space \(X\). We will prove that this \(\vect{x}\) really belongs to \(\cap_{D \in \mathcal{D}} \bar{D}\) in the following, during which the concept of subbasis is adopted, whose finite intersection forms the topological basis of the product space.
Let \(U_i\) be any open set in \(X_i\) containing \(x_i\) and \(\pi_i^{-1}(U_i)\) be the corresponding subbasis element. For all \(D \in \mathcal{D}\), we have
\[
D \cap \pi_i^{-1}(U_i) = \prod_{j \in I} \pi_j(D) \cap \pi_j(\pi_i^{-1}(U_i)).
\]
There are the following two cases:
When \(j = i\), the corresponding component in the above product is \(\pi_i(D) \cap U_i\). Because of equation \eqref{eq:x_i_range} and \(U_i\) being any open set in \(X_i\) containing \(x_i\), there exists a \(y_i \in \pi_i(D) \cap U_i\), i.e. \(\pi_i(D) \cap U_i \neq \varPhi\).
For if \(\pi_i(D) \cap U_i = \varPhi\), because \(U_i\) being any open set in \(X_i\) containing \(x_i\), then \(x_i \in \left( \overline{\pi_i(D)} \right)^c\), which contradicts the fact that \(x_i \in \overline{\pi_i(D)}\).
When \(j \neq i\),
\[
\pi_j(D) \cap \pi_j(\pi_i^{-1}(U_i)) = \pi_j(D) \cap X_j = \pi_j(D).
\]
Summarizing the above, we know that as long as we select a \(\vect{y}\) from \(D\) with its \(i\)th component being \(y_i \in \pi_i(D) \cap U_i\), we have \(\vect{y} \in D \cap \pi_i^{-1}(U_i)\) for all \(D \in \mathcal{D}\). According to Lemma 37.2 (2), the subbasis element \(\pi_i^{-1}(U_i)\) for all \(i \in I\) belongs to \(\mathcal{D}\). We also see that \(\vect{x} \in \pi_i^{-1}(U_i)\).
In addition, the finite intersection of these subbasis elements, which is a basis element of the product space, is not empty due to the FIP of \(\mathcal{D}\). Then according to Lemma 37.2 (1), the basis elements of \(X\) which contain \(\vect{x}\) also belong to \(\mathcal{D}\).
Because \(\mathcal{D}\) has the FIP, for all basis element \(B\) containing \(\vect{x}\) and for all element \(D\) of \(\mathcal{D}\), their intersection is not empty. Assume there exists a \(D_0 \in \mathcal{D}\) such that \(\vect{x} \notin \bar{D}_0\), or rather \(\vect{x} \in X - \bar{D}_0\), which is open in \(X\). Then there exits a basis element \(B_0\) containing \(\vect{x}\) such that \(B_0 \cap \bar{D}_0 = \varPhi\) and hence \(B_0 \cap D_0 = \varPhi\). This contradicts the fact that for all such basis element \(B\), \(B \cap D_0 \neq \varPhi\).
Now we arrive at the conclusion that for all \(D \in \mathcal{D}\), \(\vect{x} \in \bar{D}\), and for any collection \(\mathcal{A}\) of subsets in \(X\) having the FIP with \(\mathcal{D}\) being the maximal element on the same chain, \(\cap_{A \in \mathcal{A}} \bar{A} \neq \varPhi\). According to Lemma 26.9, the product space \(X\) is compact.
Tychonov Theorem的更多相关文章
- Parseval's theorem 帕塞瓦尔定理
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)
树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- [转]A plain english introduction to cap theorem
Kaushik Sathupadi Programmer. Creator. Co-Founder. Dad. See all my projects and blogs → A plain engl ...
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
随机推荐
- U3D虚拟摇杆制作
来自https://www.cnblogs.com/jiuxuan/p/7453762.html 1.创建两个Image,修改第一个Image名称为 Background,把第二个Image放入 Ba ...
- 关于apache配置映射端口
step1.打开httpd.conf找到Listen 80这一行在后面添加Listen 8080Listen 8001Listen 8002Listen 8003也就是意味着每个项目占用一个端口,就像 ...
- hibernate框架学习之二级缓存
缓存的意义 l应用程序中使用的数据均保存在永久性存储介质之上,当应用程序需要使用数据时,从永久介质上进行获取.缓存是介于应用程序与永久性存储介质之间的一块数据存储区域.利用缓存,应用程序可以将使用的数 ...
- selenium控制浏览器
1.要把浏览器设置为全屏,否则有些元素是操作失败的,如对下图进行操作按钮是失败的,因为按钮没有显示出来 2.设置浏览器的宽.高 3.控制前进.后退(不建议使用driver.black().driver ...
- $Django RESTful规范
一 什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移” REST从资源的角度 ...
- 前端 ---- js 模拟百度导航栏滚动案例
模拟百度导航栏滚动监听 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta chars ...
- java子类数组的引用转换成超类数组的引用
public class Person { } public class Student extends Person{ private String name; public Student(Str ...
- [转]ASCII码表及扩展ASCII码表,方便查阅
ASCII码表可以看成由三部分组成: 第一部分:由00H到1FH共32个,一般用来通讯或作为控制之用.有些可以显示在屏幕上,有些则不能显示,但能看到其效果(如换行.退格).如下表: 第二部分:是由20 ...
- javaweb web.xml文件详解
web.xml文件详解 前言:一般的web工程中都会用到web.xml,web.xml主要用来配置,可以方便的开发web工程.web.xml主要用来配置Filter.Listener.Servlet等 ...
- 深入理解ajax
http://www.imooc.com/code/13468 基础练习 http://www.imooc.com/video/5644 !ajax! 常用 for ...