[luogu2296][寻找道路]
直接赋题目。。。。。
题目描述
在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:
1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。
2 .在满足条件1 的情况下使路径最短。
注意:图G 中可能存在重边和自环,题目保证终点没有出边。
请你输出符合条件的路径的长度。
输入输出格式
输入格式:
输入文件名为road .in。
第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。
接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。
最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。
输出格式:
输出文件名为road .out 。
输出只有一行,包含一个整数,表示满足题目᧿述的最短路径的长度。如果这样的路径不存在,输出- 1 。
输入输出样例
输入样例#1:3 2
1 2
2 1
1 3输出样例#1:-1输入样例#2:6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5输出样例#2:3
对于一般的这种没有权值的有向图,一般都会想到跑一边bfs,用一个数组记录花费(比如我)。
然而这道题的不同之处在于
1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。
如图 按照题目中所述
2可以到达T,3也可以到达T,但是选择路径时可以选择3,不能选择2。
原因在于2有一个子节点为1,而1不能到达T,所以不能选择2。
清楚了这个之后,思路基本上就有了(因为我太弱,思路可能不太完美)
- 首先,存图时,存一个反图,便于后边从t开始的bfs
- 从t开始bfs一次,找出所有能到达t的点
- 讲不能到达t的父节点和此节点标记为不能走
- 最后,从s开始bfs一次,只走能走的点,并用一个数组记录路径长
最后附上代码
#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
queue<int>q1,q2;
struct node{
int u,v,nxt;
}a[],b[];
int n,m,head1[],head2[],vis1[],s,t,vis2[],vis3[];
int main()
{
scanf("%d%d",&n,&m);
for(int i=,x,y;i<=m;++i)
{
scanf("%d%d",&x,&y);
if(x!=y)
{
a[i].u=x,a[i].v=y,a[i].nxt=head1[x];//用a来存正向图
head1[x]=i;
b[i].u=y,b[i].v=x,b[i].nxt=head2[y];//b用来存反向图
head2[y]=i;
} }
scanf("%d%d",&s,&t);
q2.push(t);
vis2[t]=;
while(!q2.empty())//从t开始一遍bfs,用vis2记录所有能到达t的点(因为是反图嘛)
{
int qq=q2.front();
q2.pop();
for(int i=head2[qq];i;i=b[i].nxt)
{
int v=b[i].v;
if(!vis2[v])
{
vis2[v]=;
q2.push(v);
}
} }
for(int i=;i<=n;++i)
{
vis3[i]=;
}
for(int i=;i<=m;++i)//将不能到达的节点及其父节点变为不能到达,
{
if(!vis2[a[i].v]) vis3[a[i].u]=vis3[a[i].v]=;//用vis3记录(不用vis2是为了防止后效性,即前面的赋值影响后面,导致vis2全变为0)
}
q1.push(s);
vis1[s]=;
while(!q1.empty())//从s开始一遍bfs,
{
int qq=q1.front();
q1.pop();
for(int i=head1[qq];i;i=a[i].nxt)
{
int v=a[i].v;
if(v==t)//搜到了t就将其路径长输出
{
printf("%d",vis1[a[i].u]);//因为vis[3]初值为1,所以此处不用+1;
return ;
}
else if(vis3[v]&&!vis1[v])//只走vis3中标记为能走的点(前边一大堆就是为了找这些点....)
{
vis1[v]=vis1[a[i].u]+;//将每个节点的路径长变为其父节点 路径长+1,因为权值都是1,这也是能用bfs而可以不用dijkstra的原因
q1.push(v);
}
}
}
printf("-1");//如果不能到达就输出-1
return ;//拜拜。。。。
}
[luogu2296][寻找道路]的更多相关文章
- $Noip2014/Luogu2296$ 寻找道路 图论
$Luogu$ $Sol$ 首先找出符合条件一的点然后跑$SPFA$就好了叭. 如何判断点是否符合条件一呢?先连反边,记录每个点的入度,然后从终点开始$dfs$,记录每个点被到达的次数,若到达的次数等 ...
- 【NOIP14 D2T2】寻找道路
Source and Judge NOIP2014 提高组 D2T2Luogu2296Caioj1567 Problem [Description] 在有向图 G 中,每条边的长度均为 1,现给定起点 ...
- NOIP2014 寻找道路
2.寻找道路 (road.cpp/c/pas) [问题描述] 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指 ...
- Codevs 3731 寻找道路 2014年 NOIP全国联赛提高组
3731 寻找道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找 ...
- 洛谷P2296 寻找道路 [拓扑排序,最短路]
题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...
- 【DFS】【图论】NOIP2014寻找道路
[NOIP2014]寻找道路 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所 ...
- 【洛谷P2296】[NOIP2014]寻找道路
寻找道路 题目链接 这道题非常的水,按照题意, 先反向建边,从终点搜索,标记出可以到达终点的点 然后枚举一遍,判断出符合条件1的点 再从起点搜索一遍就可以了 #include<iostream& ...
- 洛谷P2296 寻找道路==codevs3731 寻找道路
P2296 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...
- noip寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
随机推荐
- .Net MVC4 log4net的配置
一.首先在使用log4net记录日志的时候,我们要引用log4net.dll文件 二.在web.config中添加一下配置代码 <configSections> <!-- For m ...
- js发布订阅模式实现
//可以用于无相关页面或组件的事件.数据传递,减少在onShow中的业务,降低代码耦合 let events = {} /**订阅**/ function on(name, self, callbac ...
- 如何在cmd中集成git
1.要在cmd中集成git,要解决在cmd中输入git命令时不提示git不是内部或外部命令: 即需要将git添加到path变量中,即将D:\Git\mingw64\bin和D:\Git\mingw64 ...
- CodeForces - 1051D Bicolorings(DP)
题目链接:http://codeforces.com/problemset/problem/1051/D 看了大佬的题解后觉着是简单的dp,咋自己做就做不来呢. 大佬的题解:https://www.c ...
- Nginx http keepalive针对客户端行为指令
keepalive 描述 多个http请求可以复用Tcp链接 减少握手次数 通过减少并发连接数减少服务器资源消耗 降低Tcp拥塞控制影响 Syntax: keepalive_disable none ...
- 三星Galaxy S10可望率先应用于1TB的手机内存
导读 三星电子(Samsung Electronics)1月30日宣布,已经开始量产业界首款容量高达1TB的嵌入式通用闪存存储器(embedded Universal Flash Storage,eU ...
- Spring Security 学习总结
Spring Security Spring Security是基于Spring提供声明式安全保护的安全性框架.Spring Security提供了完整的安全性解决方案,能够在Web请求级别和方法调用 ...
- linux中安装gcc
在使用CentOS的yum -y install 时 可以先进入 /etc/yum.repos.d/ 文件下,将CentOS-Base.repo文件名改为CentOS-Base.repo.bak使 ...
- Comet OJ - Contest #0
A:化成x-√n=y+z-√4yz的形式,则显然n是完全平方数时有无数组解,否则要求n=4yz,暴力枚举n的因数即可.注意判断根号下是否不小于0. #include<iostream> # ...
- Codeforces Round #488 Div. 1
A:枚举每个点判断是否同时在两个正方形中即可. #include<iostream> #include<cstdio> #include<cmath> #inclu ...