●POJ 2284 That Nice Euler Circuit
题链:
http://poj.org/problem?id=2284
题解:
计算几何,平面图的欧拉定理
欧拉定理:设平面图的定点数为v,边数为e,面数为f,则有 v+f-e=2
即 f=e-v+2
所以$N^2$求出所以线段的交点,并去重,
然后再计算出最后共有多少边,(判断点是否在线段上,是的话则e++)
总的复杂度 $O(N^3)$
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 350
using namespace std;
const double eps=1e-8;
struct Point{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){}
};
typedef Point Vector;
int sign(double x){
if(-eps<=x&&x<=eps) return 0;
return x<0?-1:1;
}
bool operator < (const Point &A,const Point &B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
bool operator == (const Point &A,const Point &B){return sign(A.x-B.x)==0&&sign(A.y-B.y)==0;}
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);}
double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
Point D[MAXN],V[MAXN*MAXN];
int N;
bool SPI(Point a1,Point a2,Point b1,Point b2){//Segment_Proper_Intersection
static double c1,c2,c3,c4;
c1=(a2-a1)^(b1-a1); c2=(a2-a1)^(b2-a1);
c3=(b2-b1)^(a1-b1); c4=(b2-b1)^(a2-b1);
return sign(c1*c2)<0&&sign(c3*c4)<0;
}
bool OS(Point P,Point a1,Point a2){//On_Segment
return sign((P-a1)^(P-a2))==0&&sign((P-a1)*(P-a2))<0;
}
Point GLI(Point P,Vector v,Point Q,Vector w){//Get_Line_Intersection
static Vector u; u=P-Q;
return P+v*((w^u)/(v^w));
}
int main(){
int Case=0,v,e;
while(scanf("%d",&N)&&N){
for(int i=1;i<=N;i++)
scanf("%lf%lf",&D[i].x,&D[i].y),V[i]=D[i];
N--; v=N; e=N;
for(int i=1;i<=N;i++)
for(int j=1;j<i;j++)
if(SPI(D[j],D[j+1],D[i],D[i+1]))
V[++v]=GLI(D[j],D[j+1]-D[j],D[i],D[i+1]-D[i]);
sort(V+1,V+v+1);
v=unique(V+1,V+v+1)-V-1;
for(int i=1;i<=v;i++)
for(int j=1;j<=N;j++)
if(OS(V[i],D[j],D[j+1])) e++;
printf("Case %d: There are %d pieces.\n",++Case,e-v+2);
}
return 0;
}
●POJ 2284 That Nice Euler Circuit的更多相关文章
- poj 2284 That Nice Euler Circuit 解题报告
That Nice Euler Circuit Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 1975 Accepted ...
- POJ 2284 That Nice Euler Circuit (LA 3263 HDU 1665)
http://poj.org/problem?id=2284 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...
- pku 2284 That Nice Euler Circuit
题意: 给你n个点第n个点保证与第0个点相交,然后求这n个点组成的图形可以把整个平面分成几个面 思路: 这里的解题关键是知道关于多面体的欧拉定理 多面体: 设v为顶点数,e为棱数,f是面数,则v-e+ ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
- POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)
That Nice Euler Circuit Time Limit: 3000MS M ...
- UVa 10735 (混合图的欧拉回路) Euler Circuit
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- Uva 1342 - That Nice Euler Circuit
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
随机推荐
- 【Swift】Runtime动态性分析
Swift是苹果2014年发布的编程开发语言,可与Objective-C共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序.Swift已经开源,目前最新版本为2.2.我们知道Objec ...
- 构建微服务开发环境4————安装Docker及下载常用镜像
[内容指引] 下载Docker: Mac下安装Docker: Windows下安装Docker; 下载常用docker镜像. 一.下载Docker 1.Mac适用Docker下载地址:https:// ...
- NYOJ 炫舞家st
#include <iostream>#include <cstring>#include <algorithm>using namespace std; cons ...
- JAVA_SE基础——50.接口关系下的多态
接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口 变量 = ...
- Python——cmd调用(os.system阻塞处理)
os.system(返回值为0,1,2) 0:成功 1:失败 2:错误 os.system默认阻塞当前程序执行,在cmd命令前加入start可不阻塞当前程序执行. 例如: import os os.s ...
- threadlocal原理及常用应用场景
1.深入解析ThreadLocal类 ThreadLocal类提供的几个方法: public T get() { } public void set(T value) { } public void ...
- emqtt 试用(四)emq 的主题访问控制 acl.conf
访问控制(ACL) EMQ 消息服务器通过 ACL(Access Control List) 实现 MQTT 客户端访问控制. ACL 访问控制规则定义: 允许(Allow)|拒绝(Deny) 谁(W ...
- angluarjs2入门学习资源
http://www.runoob.com/angularjs2/angularjs2-tutorial.htmlhttps://segmentfault.com/a/1190000008423981 ...
- 新概念英语(1-3)Sorry, sir
Does the man get his umbrella back? A:My coat and my umbrella please. B:Here is my ticket. A:Thank y ...
- Django 基于session认证 小作业
基于session认证 相亲小作业 用户登录 如果男用户登录,显示女生列表 如果女用户登录,显示男生列表 """s4day74 URL Configuration Th ...