题目描述

  七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行。这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员XLk、Poet_shy和lydrainbowcat拯救出来的的applepi。看到两人对太鼓达人产生了兴趣,applepi果断闪人,于是cl拿起鼓棒准备挑战。然而即使是在普通难度下,cl的路人本性也充分地暴露了出来。一曲终了,不但没有过关,就连鼓都不灵了。Vani十分过意不去,决定帮助工作人员修鼓。

  鼓的主要元件是M个围成一圈的传感器。每个传感器都有开和关两种工作状态,分别用1和0表示。显然,从不同的位置出发沿顺时针方向连续检查K个传感器可以得到M个长度为K的01串。Vani知道这M个01串应该是互不相同的。而且鼓的设计很精密,M会取到可能的最大值。现在Vani已经了解到了K的值,他希望你求出M的值,并给出字典序最小的传感器排布方案。

输入

  一个整数K。

输出

 一个整数M和一个二进制串,由一个空格分隔。表示可能的最大的M,以及字典序最小的排布方案,字符0表示关,1表示开。你输出的串的第一个字和最后一个字是相邻的。

样例输入

3

样例输出

8 00010111

提示

得到的8个01串分别是000、001、010、101、011、111、110和100。注意前后是相邻的。长度为3的二进制串总共只有8种,所以M = 8一定是可能的最大值。

对于全部测试点,2≤K≤11。

哈密顿回路:

将每个点看成一个$k$位的二进制,每条边看成一个$k+1$位的二进制,那么一个点$u$向另一个点$v$连边当且仅当$u$去掉第一位后在后面加上一位能得到$v$,例如:$001$向$010$连边,边的二进制为$0010$。可以发现,这个图一定存在一条哈密顿回路,那么第一问的答案显然是$2^k$。对于第二问,因为$k$较小,直接暴力找哈密顿回路即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int vis[3000];
int ans[3000];
int k,n;
int mask;
bool dfs(int x,int dep)
{
ans[dep]=x;
vis[x]=1;
if(dep==n)
{
return 1;
}
if(!vis[(x<<1)&mask])
{
if(dfs((x<<1)&mask,dep+1))
{
return 1;
}
}
if(!vis[((x<<1)|1)&mask])
{
if(dfs(((x<<1)|1)&mask,dep+1))
{
return 1;
}
}
vis[x]=0;
return 0;
}
int main()
{
scanf("%d",&k);
n=1<<k,mask=n-1;
printf("%d ",n);
vis[0]=1;
dfs(0,1);
for(int i=1;i<=n;i++)
{
printf("%d",(ans[i]>>(k-1))&1);
}
}

欧拉回路:

如果将点看成一个$k-1$位的二进制,边看成一个$k$位二进制,那么就是求一个欧拉回路,同样暴力$dfs$即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int vis[3000];
int ans[3000];
int k,n;
int mask;
bool dfs(int x,int dep)
{
if(dep==n)
{
return 1;
}
if(!vis[x<<1])
{
vis[x<<1]=1;
ans[dep+1]=x<<1;
if(dfs((x<<1)&mask,dep+1))
{
return 1;
}
vis[x<<1]=0;
}
if(!vis[x<<1|1])
{
vis[x<<1|1]=1;
ans[dep+1]=x<<1|1;
if(dfs((x<<1|1)&mask,dep+1))
{
return 1;
}
vis[x<<1|1]=0;
}
return 0;
}
int main()
{
scanf("%d",&k);
n=1<<k,mask=(1<<(k-1))-1;
printf("%d ",n);
dfs(0,0);
for(int i=1;i<=n;i++)
{
printf("%d",(ans[i]>>(k-1))&1);
}
}

BZOJ3033太鼓达人——哈密顿回路/欧拉回路的更多相关文章

  1. BZOJ3033: 太鼓达人(欧拉回路)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 524  Solved: 400[Submit][Status][Discuss] Description ...

  2. bzoj3033: 太鼓达人 欧拉路径

    题目链接 bzoj3033: 太鼓达人 题解 对于k-1位点,k位二进制位边,将点的转移连起来 每个点的入度和出度相等并且全部是偶点 只需要在这个图中找字典序最小的欧拉回路 可以贪心地找字典序较小的边 ...

  3. BZOJ3033 太鼓达人题解

    太鼓达人 时间限制: 1 Sec  内存限制: 128 MB 题目描述 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是 ...

  4. 【BZOJ3033】太鼓达人 暴力+欧拉回路

    [BZOJ3033]太鼓达人 Description 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员 ...

  5. [BZOJ3033]太鼓达人|欧拉图

    Description 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员XLk.Poet_shy和ly ...

  6. BZOJ3033 太鼓达人

    3033: 太鼓达人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 690  Solved: 497[Submit][Status][Discuss] ...

  7. [BZOJ3033]:太鼓达人(爆搜)

    题目传送门 题目描述 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员XLk.Poet_shy和lyd ...

  8. BZOJ3033:太鼓达人(DFS,欧拉图)

    Description 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员XLk.Poet_shy和ly ...

  9. [bzoj3033]太鼓达人 题解(搜索)

    Description 七夕祭上,Vani牵着cl的手,在明亮的灯光和欢乐的气氛中愉快地穿行.这时,在前面忽然出现了一台太鼓达人机台,而在机台前坐着的是刚刚被精英队伍成员XLk.Poet_shy和ly ...

随机推荐

  1. [Vue] vuex进行组件间通讯

    vue 组件之间数据传输(vuex) 初始化 store src/main.js import Vuex from "vuex"; Vue.use(Vuex); new Vue({ ...

  2. C# 切换中英文输入法

    在界面输入时,有时需要限定输入法. 在不自定义正则表达式或者其它输入处理的情况下,切换中英文时与当前语言栏匹配,有以下的几种系统方案: InputLanguage方案 使用System.Windows ...

  3. HeadFirst设计模式读书笔记之工厂模式

    1. 简单工厂 1. 你开了一家披萨店,点披萨的方法可能是这样: public Pizza orderPizza(String type) { Pizza pizza; if (type.equals ...

  4. Hadoop综合大作业

    Hadoop综合大作业 要求: 用Hive对爬虫大作业产生的文本文件(或者英文词频统计下载的英文长篇小说)词频统计. 用Hive对爬虫大作业产生的csv文件进行数据分析 1. 用Hive对爬虫大作业产 ...

  5. Spring注解AOP及单元测试junit(6)

    2019-03-10/20:19:56 演示:将xml配置方式改为注解方式 静态以及动态代理推荐博客:https://blog.csdn.net/javazejian/article/details/ ...

  6. Retrofit+MVP框架封装记录篇

    当下最流行的网络请求组合,retrofit2+okhttp+rxjava+mvp 这里是封装记录篇 首先分模块,比如登录 先来说封装后的使用 package com.fragmentapp.login ...

  7. Jmeter调用自定义jar包

    一. 场景 在测试过程中, 可能需要调用第三方jar包来生成测试数据或者使用java工具类来实现业务场景, 普遍的做法是手动调用jar包, 再把这些值赋给jmeter中的某个参数, 以满足业务测试需求 ...

  8. Hadoop Yarn框架原理解析

    在说Hadoop Yarn的原理之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTrac ...

  9. MyDAL - .IsExistAsync() 使用

    索引: 目录索引 一.API 列表 .IsExistAsync() 用于 单表 / 多表连接 查询 二.API 单表-便捷 方法 举例 1.单表-便捷, 判断是否存在方法 var date = Dat ...

  10. 对css盒模型的理解

    介绍一下标准css的盒子模型?低版本IE的盒子模型有什么不同的? 1.有两种:IE盒子模型(怪异模式).W3c盒子模型(标准模式). 2.盒模型组成:内容(content).内边距(padding). ...