死磕 java集合之ConcurrentSkipListSet源码分析——Set大汇总
问题
(1)ConcurrentSkipListSet的底层是ConcurrentSkipListMap吗?
(2)ConcurrentSkipListSet是线程安全的吗?
(3)ConcurrentSkipListSet是有序的吗?
(4)ConcurrentSkipListSet和之前讲的Set有何不同?
简介
ConcurrentSkipListSet底层是通过ConcurrentNavigableMap来实现的,它是一个有序的线程安全的集合。
源码分析
它的源码比较简单,跟通过Map实现的Set基本是一致,只是多了一些取最近的元素的方法。
为了保持专栏的完整性,我还是贴一下源码,最后会对Set的整个家族作一个对比,有兴趣的可以直接拉到最下面。
// 实现了NavigableSet接口,并没有所谓的ConcurrentNavigableSet接口
public class ConcurrentSkipListSet<E>
extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -2479143111061671589L;
// 存储使用的map
private final ConcurrentNavigableMap<E,Object> m;
// 初始化
public ConcurrentSkipListSet() {
m = new ConcurrentSkipListMap<E,Object>();
}
// 传入比较器
public ConcurrentSkipListSet(Comparator<? super E> comparator) {
m = new ConcurrentSkipListMap<E,Object>(comparator);
}
// 使用ConcurrentSkipListMap初始化map
// 并将集合c中所有元素放入到map中
public ConcurrentSkipListSet(Collection<? extends E> c) {
m = new ConcurrentSkipListMap<E,Object>();
addAll(c);
}
// 使用ConcurrentSkipListMap初始化map
// 并将有序Set中所有元素放入到map中
public ConcurrentSkipListSet(SortedSet<E> s) {
m = new ConcurrentSkipListMap<E,Object>(s.comparator());
addAll(s);
}
// ConcurrentSkipListSet类内部返回子set时使用的
ConcurrentSkipListSet(ConcurrentNavigableMap<E,Object> m) {
this.m = m;
}
// 克隆方法
public ConcurrentSkipListSet<E> clone() {
try {
@SuppressWarnings("unchecked")
ConcurrentSkipListSet<E> clone =
(ConcurrentSkipListSet<E>) super.clone();
clone.setMap(new ConcurrentSkipListMap<E,Object>(m));
return clone;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
/* ---------------- Set operations -------------- */
// 返回元素个数
public int size() {
return m.size();
}
// 检查是否为空
public boolean isEmpty() {
return m.isEmpty();
}
// 检查是否包含某个元素
public boolean contains(Object o) {
return m.containsKey(o);
}
// 添加一个元素
// 调用map的putIfAbsent()方法
public boolean add(E e) {
return m.putIfAbsent(e, Boolean.TRUE) == null;
}
// 移除一个元素
public boolean remove(Object o) {
return m.remove(o, Boolean.TRUE);
}
// 清空所有元素
public void clear() {
m.clear();
}
// 迭代器
public Iterator<E> iterator() {
return m.navigableKeySet().iterator();
}
// 降序迭代器
public Iterator<E> descendingIterator() {
return m.descendingKeySet().iterator();
}
/* ---------------- AbstractSet Overrides -------------- */
// 比较相等方法
public boolean equals(Object o) {
// Override AbstractSet version to avoid calling size()
if (o == this)
return true;
if (!(o instanceof Set))
return false;
Collection<?> c = (Collection<?>) o;
try {
// 这里是通过两次两层for循环来比较
// 这里是有很大优化空间的,参考上篇文章CopyOnWriteArraySet中的彩蛋
return containsAll(c) && c.containsAll(this);
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
}
// 移除集合c中所有元素
public boolean removeAll(Collection<?> c) {
// Override AbstractSet version to avoid unnecessary call to size()
boolean modified = false;
for (Object e : c)
if (remove(e))
modified = true;
return modified;
}
/* ---------------- Relational operations -------------- */
// 小于e的最大元素
public E lower(E e) {
return m.lowerKey(e);
}
// 小于等于e的最大元素
public E floor(E e) {
return m.floorKey(e);
}
// 大于等于e的最小元素
public E ceiling(E e) {
return m.ceilingKey(e);
}
// 大于e的最小元素
public E higher(E e) {
return m.higherKey(e);
}
// 弹出最小的元素
public E pollFirst() {
Map.Entry<E,Object> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
// 弹出最大的元素
public E pollLast() {
Map.Entry<E,Object> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
/* ---------------- SortedSet operations -------------- */
// 取比较器
public Comparator<? super E> comparator() {
return m.comparator();
}
// 最小的元素
public E first() {
return m.firstKey();
}
// 最大的元素
public E last() {
return m.lastKey();
}
// 取两个元素之间的子set
public NavigableSet<E> subSet(E fromElement,
boolean fromInclusive,
E toElement,
boolean toInclusive) {
return new ConcurrentSkipListSet<E>
(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
// 取头子set
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new ConcurrentSkipListSet<E>(m.headMap(toElement, inclusive));
}
// 取尾子set
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new ConcurrentSkipListSet<E>(m.tailMap(fromElement, inclusive));
}
// 取子set,包含from,不包含to
public NavigableSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
}
// 取头子set,不包含to
public NavigableSet<E> headSet(E toElement) {
return headSet(toElement, false);
}
// 取尾子set,包含from
public NavigableSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
}
// 降序set
public NavigableSet<E> descendingSet() {
return new ConcurrentSkipListSet<E>(m.descendingMap());
}
// 可分割的迭代器
@SuppressWarnings("unchecked")
public Spliterator<E> spliterator() {
if (m instanceof ConcurrentSkipListMap)
return ((ConcurrentSkipListMap<E,?>)m).keySpliterator();
else
return (Spliterator<E>)((ConcurrentSkipListMap.SubMap<E,?>)m).keyIterator();
}
// 原子更新map,给clone方法使用
private void setMap(ConcurrentNavigableMap<E,Object> map) {
UNSAFE.putObjectVolatile(this, mapOffset, map);
}
// 原子操作相关内容
private static final sun.misc.Unsafe UNSAFE;
private static final long mapOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentSkipListSet.class;
mapOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("m"));
} catch (Exception e) {
throw new Error(e);
}
}
}
可以看到,ConcurrentSkipListSet基本上都是使用ConcurrentSkipListMap实现的,虽然取子set部分是使用ConcurrentSkipListMap中的内部类,但是这些内部类其实也是和ConcurrentSkipListMap相关的,它们返回ConcurrentSkipListMap的一部分数据。
另外,这里的equals()方法实现的相当敷衍,有很大的优化空间,作者这样实现,应该也是知道几乎没有人来调用equals()方法吧。
总结
(1)ConcurrentSkipListSet底层是使用ConcurrentNavigableMap实现的;
(2)ConcurrentSkipListSet有序的,基于元素的自然排序或者通过比较器确定的顺序;
(3)ConcurrentSkipListSet是线程安全的;
彩蛋
Set大汇总:
| Set | 有序性 | 线程安全 | 底层实现 | 关键接口 | 特点 |
|---|---|---|---|---|---|
| HashSet | 无 | 否 | HashMap | 无 | 简单 |
| LinkedHashSet | 有 | 否 | LinkedHashMap | 无 | 插入顺序 |
| TreeSet | 有 | 否 | NavigableMap | NavigableSet | 自然顺序 |
| CopyOnWriteArraySet | 有 | 是 | CopyOnWriteArrayList | 无 | 插入顺序,读写分离 |
| ConcurrentSkipListSet | 有 | 是 | ConcurrentNavigableMap | NavigableSet | 自然顺序 |
从中我们可以发现一些规律:
(1)除了HashSet其它Set都是有序的;
(2)实现了NavigableSet或者SortedSet接口的都是自然顺序的;
(3)使用并发安全的集合实现的Set也是并发安全的;
(4)TreeSet虽然不是全部都是使用的TreeMap实现的,但其实都是跟TreeMap相关的(TreeMap的子Map中组合了TreeMap);
(5)ConcurrentSkipListSet虽然不是全部都是使用的ConcurrentSkipListMap实现的,但其实都是跟ConcurrentSkipListMap相关的(ConcurrentSkipListeMap的子Map中组合了ConcurrentSkipListMap);
欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java集合之ConcurrentSkipListSet源码分析——Set大汇总的更多相关文章
- 死磕 java集合之DelayQueue源码分析
问题 (1)DelayQueue是阻塞队列吗? (2)DelayQueue的实现方式? (3)DelayQueue主要用于什么场景? 简介 DelayQueue是java并发包下的延时阻塞队列,常用于 ...
- 死磕 java集合之PriorityBlockingQueue源码分析
问题 (1)PriorityBlockingQueue的实现方式? (2)PriorityBlockingQueue是否需要扩容? (3)PriorityBlockingQueue是怎么控制并发安全的 ...
- 死磕 java集合之PriorityQueue源码分析
问题 (1)什么是优先级队列? (2)怎么实现一个优先级队列? (3)PriorityQueue是线程安全的吗? (4)PriorityQueue就有序的吗? 简介 优先级队列,是0个或多个元素的集合 ...
- 死磕 java集合之CopyOnWriteArraySet源码分析——内含巧妙设计
问题 (1)CopyOnWriteArraySet是用Map实现的吗? (2)CopyOnWriteArraySet是有序的吗? (3)CopyOnWriteArraySet是并发安全的吗? (4)C ...
- 死磕 java集合之LinkedHashSet源码分析
问题 (1)LinkedHashSet的底层使用什么存储元素? (2)LinkedHashSet与HashSet有什么不同? (3)LinkedHashSet是有序的吗? (4)LinkedHashS ...
- 死磕 java集合之ConcurrentHashMap源码分析(三)
本章接着上两章,链接直达: 死磕 java集合之ConcurrentHashMap源码分析(一) 死磕 java集合之ConcurrentHashMap源码分析(二) 删除元素 删除元素跟添加元素一样 ...
- 死磕 java集合之ArrayDeque源码分析
问题 (1)什么是双端队列? (2)ArrayDeque是怎么实现双端队列的? (3)ArrayDeque是线程安全的吗? (4)ArrayDeque是有界的吗? 简介 双端队列是一种特殊的队列,它的 ...
- 【死磕 Java 集合】— ConcurrentSkipListMap源码分析
转自:http://cmsblogs.com/?p=4773 [隐藏目录] 前情提要 简介 存储结构 源码分析 主要内部类 构造方法 添加元素 添加元素举例 删除元素 删除元素举例 查找元素 查找元素 ...
- 死磕 java集合之LinkedList源码分析
问题 (1)LinkedList只是一个List吗? (2)LinkedList还有其它什么特性吗? (3)LinkedList为啥经常拿出来跟ArrayList比较? (4)我为什么把LinkedL ...
随机推荐
- Docker快速入门(二)
上篇文章<Docker快速入门(一)>介绍了docker的基本概念和image的相关操作,本篇将进一步介绍image,容器和Dockerfile. 1 image文件 (1)Docker ...
- php中$_FILES应用实例
允许用户从表单上传文件是非常有用的.先来看一段HTML表单代码 <html> <body> <form action="upload_file.php" ...
- Solr(三)向solr-5.5.4中添加数据
Solr添加数据 一 首先在创建好的CORE中添加自己需要的Field(可以理解为表的字段) 1 切换到配置Field的文件目录,编辑配置Field的文件 managed-schema cd /usr ...
- Oracle数据库逻辑迁移之数据泵的注意事项
环境:数据迁移,版本 11.2.0.4 -> 12.2.0.1 思考: 对于DBA而言,常用物理方式的迁移,物理迁移的优势不必多说,使用这种方式不必担心对象前后不一致的情况,而这往往也解决了不懂 ...
- OpenApi开放平台架构实践
背景 随着业务的发展,越来越多不同系统之间需要数据往来,我们和外部系统之间产生了数据接口的对接.当然,有我们提供给外部系统(工具)的,也有我们调用第三方的.而这里重点讲一下我们对外的接口. 目前,我们 ...
- vue项目在移动端(手机)调试
查了很长一段时间的资料才搞好. 感悟就是:原来那么简单呐. 首要条件:同一局域网下(大致理解为链接相同的wifi) 1:命令行运行 ipconfig 2: 得到ipv4值, 用该值替换localhos ...
- Selenium2Lib库之键盘常用关键字实战
Press Key关键字 按F5 查看Press Key关键字的说明,如下图: Press Key关键字是用于通过键盘模拟由定位器确定的元素的用户按键.‘值’是单个字符,字符串或数值的ASCII码的“ ...
- 使用VirtualBox调试项目踩过的坑
当我们完成项目后 通常需要做其他系统的测试 例如win10下测试完成后要在win7中测试 这时,安装一个虚拟机是较为明智的选择 本文将讲述在使用虚拟机测试Unity发布的exe(所有的3D文件都适用) ...
- goroutine和线程区别
从调度上看,goroutine的调度开销远远小于线程调度开销. OS的线程由OS内核调度,每隔几毫秒,一个硬件时钟中断发到CPU,CPU调用一个调度器内核函数.这个函数暂停当前正在运行的线程,把他的寄 ...
- python+selenium实现登录账户
selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行处理(Selenium Gr ...