"《算法导论》之‘图’":单点最短路径(有向图)
也许最直观的图处理问题就是你常常需要使用某种地图软件或者导航系统来获取从一个地方到另一个地方的路径。我们立即可以得到与之对应的图模型:顶点对应交叉路口,边对应公路,边的权重对应该路段的成本(时间或距离)。如果有单行线,那就意味着还需要考虑加权有向图。在这个模型中,问题很容易就可以被归纳为:
找到一个顶点到达另一个顶点的成本最小的路径。
前言
单点最短路径指的就是从源点S到给定的目的顶点V的总权重最小的路径。
从源点S出发,到所有可达的顶点的路径构成了一棵最短路径树(Shortest Path Tree, SPT)。下边显示了从不同源点出发所构成的最短路径树:

本文用到的加权有向图如下:

Dijkstra
边的松驰
下图展示了两个边的松驰的操作。在第一个例子中,因为distTo[v] + weght(v, w) > distTo[w],所以认为边v->w应该失效;在第二个例子中,distTo[v] + weght(v, w) < distTo[w],所以认识从其他顶点到w比从v到w的路径要长,原其他顶点到w的路径应该失效,v->w有效。
通过这两个例子,我们知道,松驰操作的思想跟Prim算法的思想是很相似的。

Java代码:
private void relax(EdgeWeightedDigraph G, int v)
{
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
}
}
}
Dijkstra算法
在《算法》中给出的Java代码如下:
public class DijkstraSP
{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;
public DijkstraSP(EdgeWeightedDigraph G, int s)
{
edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pq.insert(s, 0.0);
while (!pq.isEmpty())
relax(G, pq.delMin())
}
private void relax(EdgeWeightedDigraph G, int v)
{
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.change(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
}
public double distTo(int v) // standard client query methods
public boolean hasPathTo(int v) // for SPT implementatations
public Iterable<Edge> pathTo(int v) // (See page 649.)
}
Dijkstra算法的轨迹如下:

具体代码见Github.
"《算法导论》之‘图’":单点最短路径(有向图)的更多相关文章
- 【算法导论】单源最短路径之Bellman-Ford算法
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...
- 【算法导论】单源最短路径之Dijkstra算法
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...
- 【算法导论】图的广度优先搜索遍历(BFS)
图的存储方法:邻接矩阵.邻接表 例如:有一个图如下所示(该图也作为程序的实例): 则上图用邻接矩阵可以表示为: 用邻接表可以表示如下: 邻接矩阵可以很容易的用二维数组表示,下面主要看看怎样构成邻接表: ...
- 【算法导论】图的深度优先搜索遍历(DFS)
关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...
- "《算法导论》之‘图’":深度优先搜索、宽度优先搜索(无向图、有向图)
本文兼参考自<算法导论>及<算法>. 以前一直不能够理解深度优先搜索和广度优先搜索,总是很怕去碰它们,但经过阅读上边提到的两本书,豁然开朗,马上就能理解得更进一步. 下文将会用 ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 算法导论——lec 10 图的基本算法及应用
搜索一个图是有序地沿着图的边訪问全部定点, 图的搜索算法能够使我们发现非常多图的结构信息, 图的搜索技术是图算法邻域的核心. 一. 图的两种计算机表示 1. 邻接表: 这样的方法表示稀疏图比較简洁紧凑 ...
- 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析
什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...
- C++编程练习(11)----“图的最短路径问题“(Dijkstra算法、Floyd算法)
1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的 ...
随机推荐
- 2.Cocos2dx 3.2中的重力系统Box2D
1 添加Box2D相关的库 步骤1:右击项目所在的解决方案à添加->现有项目àE:\Installed\cocos2d-x-3.2\cocos2d-x-3.2\external\Box2D ...
- JAVA面向对象-----继承
类和类之间的常见关系. 既然继承是描述类和类之间的关系,就需要先来了解类和类之间的常见关系 现实生活的整体与部分 举例说明 现实生活 学生 是人 狗 是动物 球队 包含 球员 整体与部分的关系,部分可 ...
- C在控制台上实现鼠标画图功能
#include <windows.h> #include <stdio.h> #include <string.h> HANDLE hOut; HANDLE hI ...
- JDBC存储和读取二进制数据
以下JSP文件用common-fileupload组件实现文件上传,并将文件以二进制文件的形式存入数据库 <% if("POST".equalsIgnoreCase(requ ...
- 对N各集合中的任意元素进行排列组合问题
小李去市场买菜,有蔬菜(茄子.黄瓜.大白菜...等k中素菜),和肉类(牛肉,羊肉,鸡肉...等m种荤菜),及点心(麻饼,桃酥,枣花...等n中点心),现在老婆要求每天一荤一素一点心 并且每天的样式要尽 ...
- VS2010 express中改变VC Default include/lib/… 目录
转自: Liz's Blog http://www.cnblogs.com/lizmy/archive/2012/01/10/2318258.html 2010中是以工程为单位,更改VC++ dire ...
- iOS中 按钮和标题完美各种排列/完美教程 韩俊强的博客
每日更新关注:http://weibo.com/hanjunqiang 新浪微博! 前言:最近常常用到按钮和相应标题的组合,当按钮设置图片加标题时,触发范围较小,不易触发,最重要的是还要调试偏移量, ...
- AndroidStudio如何快速制作.so
之前写过一篇Eclipse制作.so的文章,http://blog.csdn.net/baiyuliang2013/article/details/44306921使用的是GNUstep模拟Linux ...
- 文章标题 Oracle数据库中dual表使用
一. 业务场景 业务流程需要进行写入和更新的比较,所以有原表和历史表. 要求表中的ID唯一性,以及两张表的ID关联,另外后续可能数据库会进行迁移 二.方案选择 方案一:id设置为int型自增长. 这种 ...
- Swift基础之:新的访问控制fileprivate和open
(转载的,暂时没有研究过这类语句,有空看看) 在swift 3中新增加了两种访问控制权限 fileprivate和 open.下面将对这两种新增访问控制做详细介绍. fileprivate 在原有的s ...