[BZOJ2002] [Hnoi2010] Bounce 弹飞绵羊 (LCT)
Description
某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。
Input
Output
对于每个i=1的情况,你都要输出一个需要的步数,占一行。
Sample Input
1 2 1 1
3
1 1
2 1 1
1 1
Sample Output
3
HINT
Source
Solution
每个点和可以到达的点连一条边,支持动态链上查询,LCT大法好
用和splay一样的方法维护子树大小siz即可。
感谢Ngshily大吔爷的版子!!!
#include <bits/stdc++.h>
using namespace std;
struct LCT
{
int c[], fa, rev, siz;
int& operator [] (int i)
{
return c[i];
}
}a[];
int sta[], top, nxt[]; void scanf(int *x)
{
char ch = getchar();
*x = ;
while(ch < '' || ch > '')
ch = getchar();
while(ch >= '' && ch <= '')
*x = *x * + ch - , ch = getchar();
} void push_up(int k)
{
a[k].siz = a[a[k][]].siz + a[a[k][]].siz + ;
} void push_down(int k)
{
if(a[k].rev)
{
a[a[k][]].rev ^= , a[a[k][]].rev ^= ;
swap(a[k][], a[k][]), a[k].rev = ;
}
} bool isroot(int x)
{
return a[a[x].fa][] != x && a[a[x].fa][] != x;
} void rotate(int x)
{
int y = a[x].fa, z = a[y].fa;
int dy = a[y][] == x, dz = a[z][] == y;
if(!isroot(y)) a[z][dz] = x;
a[y][dy] = a[x][dy ^ ], a[a[x][dy ^ ]].fa = y;
a[x][dy ^ ] = y, a[y].fa = x, a[x].fa = z;
push_up(y);
} void splay(int x)
{
sta[top = ] = x;
for(int i = x; !isroot(i); i = a[i].fa)
sta[++top] = a[i].fa;
while(top)
push_down(sta[top--]);
while(!isroot(x))
{
int y = a[x].fa, z = a[y].fa;
if(!isroot(y))
if(a[y][] == x ^ a[z][] == y) rotate(x);
else rotate(y);
rotate(x);
}
push_up(x);
} void access(int x)
{
for(int i = ; x; x = a[x].fa)
splay(x), a[x][] = i, i = x;
} void make_root(int x)
{
access(x), splay(x), a[x].rev ^= ;
} int find_root(int x)
{
access(x), splay(x);
while(a[x][])
x = a[x][];
return x;
} void link(int x, int y)
{
make_root(x), a[x].fa = y;
} void cut(int x, int y)
{
make_root(x), access(y), splay(y), a[y][] = a[x].fa = ;
} int main()
{
int n, m, x, y, op;
scanf(&n);
for(int i = ; i <= n; i++)
{
scanf(&x), a[i].siz = ;
a[i].fa = nxt[i] = min(i + x, n + );
}
scanf(&m), a[n + ].siz = ;
while(m--)
{
scanf(&op), scanf(&x), x++;
if(op == )
{
make_root(n + ), access(x), splay(x);
printf("%d\n", a[x].siz - );
}
else
{
scanf(&y), cut(nxt[x], x);
nxt[x] = min(x + y, n + );
link(nxt[x], x);
}
}
return ;
}
[BZOJ2002] [Hnoi2010] Bounce 弹飞绵羊 (LCT)的更多相关文章
- [BZOJ2002][Hnoi2010]Bounce弹飞绵羊 LCT
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 建图,每次往后面跳就往目标位置连边,将跳出界的点设为同一个点.对于修改操作发现可以用 ...
- BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 【LCT】【分块】
BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始, ...
- BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...
- [bzoj2002][Hnoi2010]Bounce弹飞绵羊_LCT
Bounce弹飞绵羊 bzoj-2002 Hnoi-2010 题目大意:n个格子,每一个格子有一个弹簧,第i个格子会将经过的绵羊往后弹k[i]个,达到i+k[i].如果i+k[i]不存在,就表示这只绵 ...
- bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 [分块][LCT]
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...
- BZOJ2002: [Hnoi2010]Bounce 弹飞绵羊(LCT)
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在 他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装 ...
- [bzoj2002][Hnoi2010]Bounce弹飞绵羊——分块
Brief description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装 ...
- bzoj2002 [Hnoi2010]Bounce 弹飞绵羊【分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 这一题除了LCT解法,还有一种更巧妙,代码量更少的解法,就是分块.先想,如果仅仅记录每 ...
- bzoj2002 [Hnoi2010]Bounce 弹飞绵羊——分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 第一次用分块,感觉超方便啊: 如果记录每个点的弹力系数,那么是O(1)修改O(n)查询 ...
随机推荐
- console那些你不曾知道的玩法
一.console最常见的四种方法: FireFox(58) Chrome(51) 二.打印对象: 平时想输出对象属性时,可以直接打印对象,对Object使用toString方法会得到 [Object ...
- [bzoj]2962序列操作
[bzoj]2962序列操作 标签: 线段树 题目链接 题意 给你一串序列,要你维护三个操作: 1.区间加法 2.区间取相反数 3.区间内任意选k个数相乘的积 题解 第三个操作看起来一脸懵逼啊. 其实 ...
- easyui+ajax获取同表关联的数据
easyui是我们常用的前端框架之一,easyui的使用使得前端页面更加美观.为了能够使用combobox,ajax必须同步. 该小程序是使用ssm框架,对数据库的数据进行查询,所以url对应着map ...
- 通过云主机(网关机)远程登录内网mysql
国内的一些云主机平台(UCloud,阿里云,腾讯云等)走的都是网关机+内网机(即局域网)模式,网关机代理外网访问,不能直接连接内网机器.本文介绍通过远程登录云主机,并设置本地代理的方式,通过sqlyo ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- OpenCV 之 空间滤波
1 空间滤波 1.1 基本概念 空间域,在图像处理中,指的是像平面本身: 空间滤波,则是在像平面内,对像素值所进行的滤波处理. 如上图所示,假设点 (x, y) 为图像 f 中的任意点,中间正方形 ...
- SpringBoot SpringSecurity4整合,灵活权限配置,弃用注解方式.
SpringSecurity 可以使用注解对方法进行细颗粒权限控制,但是很不灵活,必须在编码期间,就已经写死权限 其实关于SpringSecurity,大部分类都不需要重写,需要的只是妥善的配置. 每 ...
- java发送邮件时遇到的坑
之前用163邮箱发邮件时明明是成功的,但是使用中国移动自己的邮箱时,无论如何在linux服务器中都发送不成功,一开始报如下错误: javax.mail.MessagingException: Unkn ...
- GNU C 扩展之__attribute__ 机制简介
在学习linux内核代码及一些开源软件的源码(如:DirectFB),经常可以看到有关__attribute__的相关使用.本文结合自己的学习经历,较为详细的介绍了__attribute__相关语法及 ...
- mysql学习笔记03 mysql数据类型
数值型:整数型 小数型字符串型时间和日期类型 数值型①整数型1 2 3 4 81bin表示1位,1Byte表示一个字节1B=8b.1汉字=2字节(1 word = 2 byte)1字节=8位(1 by ...