/**
题目:青蛙的约会
链接:https://vjudge.net/contest/154246#problem/R
题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。
如果永远无法相遇输出Impossible。
思路:
设:次数为t;
圈总长为: L
A位置:(x+m*t)%L;
B位置: (y+n*t)%L; 如果: (x+m*t)%L = (y+n*t)%L 存在碰面; 暴力枚举t。太大了; 保证m,n<L; m%=L; n%=L; 又x!=y; => (x+m*t - (y+n*t)) %L = 0;
设:x+m*t-y-n*t = L*k; (k为整数); =>(x-y)+(m-n)*t = L*k; L*k-(m-n)*t = (x-y); 未知数(k, t); 换位置:(m-n)*t - L*k = (y-x) 令:ax+by = c; a = m-n;
b = -L;
c = y-x; 然后根据:
方程ax+by=c的整数解(a,b,c为整数)
令g=gcd(a,b), 很明显,c不是g的倍数时方程无解。如果c等于g,用扩展欧几里德算法求得一组解(x0,y0). 如果c是g的倍数,则相应的一组解(x0*c/g,y0*c/g).
若方程存在解(x1,y1),则通解形式为(x1+k*b/g, y1-k*a/g), k为任意整数 */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const double eps = 1e-;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
ll ext_gcd(ll a,ll b,ll &x,ll &y)
{
ll ret, tmp;
if(!b){
x = , y = ; return a;
}
ret = ext_gcd(b,a%b,x,y);
tmp = x;
x = y;
y = tmp-a/b*y;
return ret;
}
int main()
{
ll x, y, m, n, L;
while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)!=EOF)
{
ll a, b, c;
a = m-n;
b = -L;
c = y-x;
if(c%gcd(a,b)!=){
printf("Impossible\n"); continue;
}
ll xx, yy;
ll d = ext_gcd(a,b,xx,yy);
ll add = b/d;
ll t = xx*c/d;
if(add<) add = -add;
t %= add;
if(t<=) t+=add;
printf("%lld\n",t);
}
return ;
} 下面这一份是自己最开始写的方法。很繁琐。

/**
题目:青蛙的约会
链接:https://vjudge.net/contest/154246#problem/R
题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。
如果永远无法相遇输出Impossible。
思路:
设:次数为t;
圈总长为: L
A位置:(x+m*t)%L;
B位置: (y+n*t)%L; 如果: (x+m*t)%L = (y+n*t)%L 存在碰面; 暴力枚举t。太大了; 保证m,n<L; m%=L; n%=L; 又x!=y; => (x+m*t - (y+n*t)) %L = 0;
设:x+m*t-y-n*t = L*k; (k为整数); =>(x-y)+(m-n)*t = L*k; L*k-(m-n)*t = (x-y); 未知数(k, t); 令:ax+by = c; a = L;
b = -(m-n);
c = (x-y); 为了保证c为正数,所以要处理一下符号关系。暂且当做已经处理过。 把负号都放入未知数中。那么要判断是否这样处理过,如果处理过,那么得出来的K,t要取反。 题目应该是求最小的满足的解t>=1; 然后根据:
方程ax+by=c的整数解(a,b,c为整数)
令g=gcd(a,b), 很明显,c不是g的倍数时方程无解。如果c等于g,用扩展欧几里德算法求得一组解(x0,y0). 如果c是g的倍数,则相应的一组解(x0*c/g,y0*c/g).
若方程存在解(x1,y1),则通解形式为(x1+k*b/g, y1-k*a/g), k为任意整数 */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const double eps = 1e-;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
ll ext_gcd(ll a,ll b,ll &x,ll &y)
{
ll ret, tmp;
if(!b){
x = , y = ; return a;
}
ret = ext_gcd(b,a%b,x,y);
tmp = x;
x = y;
y = tmp-a/b*y;
return ret;
}
int main()
{
ll x, y, m, n, L;
while(scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L)!=EOF)
{
int flag = ;///flag==0表示正数,否则表示负数;
ll a, b, c;
a = L;
b = m>n?(m-n):(n-m);
c = x>y?(x-y):(y-x);
if(m-n==){
printf("Impossible\n"); continue;
}
if(x>y){
if(m>n) flag = ;
}else
{
if(m<n) flag = ;
}
if(c%gcd(a,b)!=){
printf("Impossible\n"); continue;
}
ll xx, yy;
ll d = ext_gcd(a,b,xx,yy);
ll ans = inf;
ll add = -a/d;//<0
ll t = yy*c/d;
if(flag){///t应该为负数,取反才为正数。
if(t>=){
t %= (-add);
while(t>=){
t += add;
}
ans = -t;
}else
{
t = (-t)%(-add);
t = -t;
if(t==){
ans = -add;
}
while(t<){
ans = -t;
t -= add;
}
}
}else
{///t应该为正数。
if(t>){
t %= (-add);
while(t>){
ans = t;
t += add;
}
}else
{
t = (-t)%(-add);
t = -t;
while(t<=){
t -= add;
}
ans = t;
}
}
if(ans==inf){
printf("Impossible\n"); continue;
}else
printf("%lld\n",ans);
}
return ;
}

青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。的更多相关文章

  1. pku 1061 青蛙的约会 扩展欧几里得

    青蛙的约会Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 120482 Accepted: 25449Description 两只青 ...

  2. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  3. JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

    http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013 ...

  4. Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

  5. POJ - 1061 青蛙的约会 扩展欧几里得 + (贝祖公式)最小正整数解

    题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...

  6. [poj1061]青蛙的约会<扩展欧几里得>

    题目链接:http://poj.org/problem?id=1061 其实欧几里得我一直都知道,只是扩展欧几里得有点蒙,所以写了一道扩展欧几里得裸题. 欧几里得算法就是辗转相除法,求两个数的最大公约 ...

  7. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  8. [P1516]青蛙的约会 (扩展欧几里得/中国剩余定理?)

    每日做智推~ 一看就是一道数学题. 再看是一道公约数的题目. 标签是中国孙子定理. 题解是扩展欧几里得 (笑) 一开始没看数据范围 只有50分 开一个longlong就可以了 #include< ...

  9. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

随机推荐

  1. 【FTP】org.apache.commons.net.ftp.FTPClient实现复杂的上传下载,操作目录,处理编码

    和上一份简单 上传下载一样 来,任何的方法不懂的,http://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/net ...

  2. Java笔记6:多态

    一.多态的分类对象的多态性:动物 x = new 猫();函数的多态性:函数重载.重写 二.多态的体现父类的引用指向了自己的子类对象父类的引用也可以接收自己的对象 三.多态的前提必须是类与类之间只有关 ...

  3. Directive Controller And Link Timing In AngularJS

    I've talked about the timing of directives in AngularJS a few times before. But, it's a rather compl ...

  4. python之MySQL学习——防止SQL注入

    python之MySQL学习——防止SQL注入 学习了:https://www.cnblogs.com/xiaomingzaixian/p/7126840.html https://www.cnblo ...

  5. 【LeetCode】Find Minimum in Rotated Sorted Array 解题报告

    今天看到LeetCode OJ题目下方多了"Show Tags"功能.我觉着挺好,方便刚開始学习的人分类练习.同一时候也是解题时的思路提示. [题目] Suppose a sort ...

  6. Django——基于类的视图源码分析 二

    源码分析 抽象类和常用视图(base.py) 这个文件包含视图的顶级抽象类(View),基于模板的工具类(TemplateResponseMixin),模板视图(TemplateView)和重定向视图 ...

  7. Visual Studio C++ MFC界面常用参数更改(改变图标,添加控件,调试打印函数等等)

    背景 需要使用Visual Studio C++做一些界面.此篇文章既是记录Visual Studio C++在调整界面时常常遇见的问题. 正文 一.如何更改窗体图标,以及生成的.exe图标 更改窗体 ...

  8. Hibernate单向“一对多”关联

    1. 基于连接表的单向“一对多”关联,应该优先被采用其中指定many-to-many的unique="true",为单向“一对多”,不指定就是单向“多对多” <class n ...

  9. grep和map计算两个集合交集、并集、补集

    #!/usr/bin/perl use strict; ######################################## 用grep 和map 获取两个列表的交集并集.补集###### ...

  10. HTML5特性

    HTML5规范围绕如何使用新增标记定义了大量Javascript API,其中一些API与DOM重叠,定义了浏览器应该支持DOM拓展. 1.与类相关的扩充 HTML5新增了getElementsByC ...