对于一对数(p,q),若它们的gcd为x0,lcm为y0,

则:p*q/x0=y0,即q=x0*y0/p,

由于p、q是正整数,所以p、q都必须是x0*y0的约数。

所以O(sqrt(x0*y0))地枚举约数,依次用gcd判断。

 #include<cstdio>
#include<cmath>
using namespace std;
typedef long long LL;
LL limit,Q,P,To;
int ans;
LL gcd(LL a,LL b){return b==?a:gcd(b,a%b);}
int main()
{
scanf("%d%d",&P,&Q); limit=P*Q;
To=sqrt(limit);
for(LL i=P;i<=To;i++)
if(limit%i==)
if(gcd(i,limit/i)==P)
ans++;
printf("%d\n",ans<<);
return ;
}

【数论】【最大公约数】【枚举约数】CODEVS 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组的更多相关文章

  1. 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 输入二个 ...

  2. 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  3. wikioi1012 最大公约数和最小公倍数问题(2001年NOIP全国联赛普及组)

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  4. codevs 1014 装箱问题 2001年NOIP全国联赛普及组

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  5. 【动态规划】【记忆化搜索】CODEVS 1011 数的计算 2001年NOIP全国联赛普及组

    设答案为f(n),我们显然可以暴力地递归求解: f(n)=f(1)+f(2)+……+f(n/2). 但是n=1000,显然会超时. 考虑状态最多可能会有n种,经过大量的重复计算,所以可以记忆下来,减少 ...

  6. 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组

    #include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...

  7. codevs 1013 求先序排列 2001年NOIP全国联赛普及组 x

                         题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Inpu ...

  8. 1010 过河卒 2002年NOIP全国联赛普及组codevs

    1010 过河卒  2002年NOIP全国联赛普及组codevs 题目描述 Description 如图,A 点有一个过河卒,需要走到目标 B 点.卒行走规则:可以向下.或者向右.同时在棋盘上的任一点 ...

  9. codevs 1015 计算器的改良 2000年NOIP全国联赛普及组

     时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委 ...

随机推荐

  1. 面试前需要弄懂的SQL

    说明:创建数据库 view source   print? 1 Create DATABASE database-name 说明:删除数据库 view source   print? 1 drop d ...

  2. 怎么把linux的磁盘映射到windows上

    步骤如下: 右击如下的computer: 然后选择:Map network drive... 然后在下图按图中所示操作: 最后成功如下图所示:

  3. html中音频和视频

    HTML5音频中的新元素标签 src:音频文件路径. autobuffer:设置是否在页面加载时自动缓冲音频. autoplay:设置音频是否自动播放. loop:设置音频是否要循环播放. contr ...

  4. 数据结构之DFS与BFS

    深度搜索(DFS) and  广度搜索(BFS) 代码如下: #include "stdafx.h" #include<iostream> #include<st ...

  5. Spring学习--依赖注入的方式

    Spring 依赖注入: 属性注入(最常使用) 构造函数注入 工厂方法注入(很少使用,不推荐) 属性注入:通过 setter 方法注入 Bean 的属性值或依赖的对象 , 使用<property ...

  6. JS模块化工具requirejs教程02

    基本API require会定义三个变量:define,require,requirejs,其中require === requirejs,一般使用require更简短 define 从名字就可以看出 ...

  7. vue2.0基础知识,及webpack中vue的使用

    ## 基础指令 ## [v-cloak]{         Display:none;     }     <p v-cloak>xx{{msg}}xx</p> //解决闪烁问 ...

  8. EL遍历集合

    jstl EL表达式遍历集合 博客分类: JSTL/EL JSTLEL遍历集合  在EL中,方括号运算符用来检索数组和集合的元素.对于实现 java.util.Map 接口的集合,方括号运算符使用关联 ...

  9. bzoj 1412 最小割 网络流

    比较明显的最小割建模, 因为我们需要把狼和羊分开. 那么我们连接source和每个羊,流量为inf,代表这条边不能成为最小割中的点,同理连接每个狼和汇,流量为inf,正确性同上,那么对于每个相邻的羊和 ...

  10. appium===Python+Appium环境部署教程

    *前提是你已经安装好python,以及python的pip工具 *安装python请自行百度教程~ 1.安装安卓sdk 安装包:http://tools.android-studio.org/inde ...