Brief description

给定一个数列,您需要支持一下两种操作:

  1. 给[l,r]同加一个数
  2. 询问[l,r]中有多少数字大于或等于v

Algorithm analyse

这个题一时想不到什么有效的数据结构,但是暴力法非常好想:一个\(\Theta(n)\)的暴力算法。

我们考虑分块做,不那么暴力。

把数据分为\(\sqrt n\)一份,那么对于每一个查询,我们都可以把这个查询分为\(\sqrt n\)个区间,修改的时候也是\(\Theta(\sqrt n)\)的级别,所以总的复杂度就是\(\Theta(\sqrt nlog\sqrt n)\)

具体地,对于每一块,我们都存储排序前和排序后的序列,这样我们就解决了这个题。

对于size的大小,我解了一个方程,跑到了2052ms,bzoj17名,已经是这个解法(不使用平衡树)的极限了,还是非常满意。

顺便%%%强校XMYZ

Code

#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
int n, q, m, block;
const int maxn = 1000001;
int a[maxn], b[maxn], pos[maxn], add[maxn];
using std::sort;
using std::min;
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-')
f = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
inline void reset(int x) {
int l = (x - 1) * block + 1, r = min(x * block, n);
for (int i = l; i <= r; i++)
b[i] = a[i];
sort(b + l, b + r + 1);
}
inline int find(int x, int v) {
int l = (x - 1) * block + 1, r = min(x * block, n);
int last = r;
while (l <= r) {
int mid = (l + r) >> 1;
if (b[mid] < v)
l = mid + 1;
else
r = mid - 1;
}
return last - l + 1;
}
inline void update(int x, int y, int v) {
if (pos[x] == pos[y]) {
for (int i = x; i <= y; i++)
a[i] = a[i] + v;
} else {
for (int i = x; i <= pos[x] * block; i++)
a[i] = a[i] + v;
for (int i = (pos[y] - 1) * block + 1; i <= y; i++)
a[i] = a[i] + v;
}
reset(pos[x]);
reset(pos[y]);
for (int i = pos[x] + 1; i < pos[y]; i++)
add[i] += v;
}
inline int query(int x, int y, int v) {
int sum = 0;
if (pos[x] == pos[y]) {
for (int i = x; i <= y; i++)
if (a[i] + add[pos[i]] >= v)
sum++;
} else {
for (int i = x; i <= pos[x] * block; i++)
if (a[i] + add[pos[i]] >= v)
sum++;
for (int i = (pos[y] - 1) * block + 1; i <= y; i++)
if (a[i] + add[pos[i]] >= v)
sum++;
for (int i = pos[x] + 1; i < pos[y]; i++)
sum += find(i, v - add[i]);
}
return sum;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
n = read(), q = read();
if (n >= 500000)
block = 3676;
else if (n >= 5000) {
block = 209;
} else
block = int(sqrt(n));
for (int i = 1; i <= n; i++) {
a[i] = read();
pos[i] = (i - 1) / block + 1;
b[i] = a[i];
}
if (n % block)
m = n / block + 1;
else
m = n / block;
for (int i = 1; i <= m; i++)
reset(i);
for (int i = 1; i <= q; i++) {
char ch[5];
int x, y, v;
scanf("%s", ch);
x = read(), y = read(), v = read();
if (ch[0] == 'M')
update(x, y, v);
else
printf("%d\n", query(x, y, v));
}
}

[bzoj3343]教主的魔法——分块的更多相关文章

  1. BZOJ3343: 教主的魔法 分块

    2016-05-28  10:27:19 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3343 比较显然的分块题,分块后块内排序,维护整块的附 ...

  2. BZOJ-3343教主的魔法+分块(大块排序二分)

    传送门:https://www.luogu.org/problemnew/show/P2801 参考:http://hzwer.com/2784.html  感觉思路无比清晰:) ps:我在洛谷A的, ...

  3. bzoj3343: 教主的魔法 分块 标记

    修改:两边暴力重构,中间打标记.复杂度:O(n0.5) 查询:中间二分两边暴力.O(n0.5logn0.5) 总时间复杂度O(n*n0.5logn0.5) 空间复杂度是n级别的 标记不用下传因为标记不 ...

  4. [BZOJ3343]教主的魔法

    [BZOJ3343]教主的魔法 试题描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.… ...

  5. Luogu 2801 教主的魔法 | 分块模板题

    Luogu 2801 教主的魔法 | 分块模板题 我犯的错误: 有一处l打成了1,还看不出来-- 缩小块大小De完bug后忘了把块大小改回去就提交--还以为自己一定能A了-- #include < ...

  6. BZOJ 3343: 教主的魔法(分块+二分查找)

    BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1172  Solved:  ...

  7. 【BZOJ-3343】教主的魔法 分块

    3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 950  Solved: 414[Submit][Status][Discuss ...

  8. 【BZOJ3343】教主的魔法 分块+二分

    Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的 ...

  9. 【bzoj3343】教主的魔法 分块

    [bzoj3343]教主的魔法 2014年4月26日8092 Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了 ...

随机推荐

  1. 「日常训练」「小专题·图论」 Cow Contest (1-3)

    题意 分析 问题是要看出来这是个floyd闭包问题.我没看出来- - 分析之后补充. 代码 // Origin: // Theme: Graph Theory (Basic) // Date: 080 ...

  2. Qt 建立带有子项目的工程

    刚需,软件需要用到多个子项目 第一步 打开Qt新建子项目工程 如图 在此时鼠标右键,选着新建子项目如图 就是正常的新建项目的步骤,直接上图 完工,可以愉快的撸代码了

  3. JMeter学习笔记(九) 参数化4--User Variables

    4.User Variables 用户参数 1)线程组右键添加 -> 前置处理器 -> 用户参数 2)配置用户参数 3)添加HTTP请求,引用用户参数,格式: ${} 4)配置线程数 5) ...

  4. 13.0 Excel表格写入

    Excel表格写入 安装 xlutils 和 xlwt Excel写入输入 分两种方式: 第一种是向一张新表之中写入..这种不多说,我几乎没怎么用,直接贴代码 import xlwt Excel_na ...

  5. 12.0 Excel表格读取

    Pycharm安装 xlrd 首先在xuexi目录下创建一个ExcelFile文件,让后在ExcelFile下创建一个Excel表格 创建表格时记得把单元格的格式设置为[文本] 我们设置为文本之后,存 ...

  6. web开发速查表(php,css,html5........)

  7. $this是什么意思-成员变量和局部变量的调用

    关键字$this代表其所在的当前对象 使用当前对象的属性和方法 $this->取值 方法内的局部变量 不能用$this 关键字取值 /* 和java,c++相比 方法体内想访问调用者的属性,必须 ...

  8. poi解析excel出现格式不正确

    后缀为xlsx的excel做系统导入时出现bug: Strict OOXML isn't currently supported, please see bug #57699 为了同时兼容03.07及 ...

  9. 【WebService】——入门实例

    服务端 服务: 1.add(int a,int b) 2.minus(int a,int b) 具体如下: <pre name="code" class="java ...

  10. .Net com组件操作excel(不建议采用Com组件操作excel)

    添加"Microsoft Office 12.0 Object Library" com组件 1 using System; using System.Data; using Sy ...