原创文章~转载请注明出处哦。其他部分内容参见以下链接~
GraphSAGE 代码解析(一) - unsupervised_train.py
GraphSAGE 代码解析(三) - aggregators.py
GraphSAGE 代码解析(四) - models.py
 1 # global unique layer ID dictionary for layer name assignment
2 _LAYER_UIDS = {}
3
4 def get_layer_uid(layer_name=''):
5 """Helper function, assigns unique layer IDs."""
6 if layer_name not in _LAYER_UIDS:
7 _LAYER_UIDS[layer_name] = 1
8 return 1
9 else:
10 _LAYER_UIDS[layer_name] += 1
11 return _LAYER_UIDS[layer_name]

这里_LAYER_UIDS = {} 是记录layer及其出现次数的字典。

在 get_layer_uid()函数中,若layer_name从未出现过,如今出现了,则将_LAYER_UIDS[layer_name]设为1;否则累加。

作用: 在class Layer中,当未赋variable scope的name时,通过实例化Layer的次数来标定不同的layer_id.

例子:简化一下class Layer可以看出:

 class Layer():
def __init__(self):
layer = self.__class__.__name__
name = layer + '_' + str(get_layer_uid(layer))
print(name) layer1 = Layer()
layer2 = Layer() # Output:
# Layer_1
# Layer_2

2. class Layer

class Layer主要定义基本的层的API。

 class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
Implementation inspired by keras (http://keras.io).
# Properties
name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off # Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
_log_vars(): Log all variables
""" def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging', 'model_size'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower() # "layer"
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.sparse_inputs = False def _call(self, inputs):
return inputs def __call__(self, inputs):
with tf.name_scope(self.name):
if self.logging and not self.sparse_inputs:
tf.summary.histogram(self.name + '/inputs', inputs)
outputs = self._call(inputs)
if self.logging:
tf.summary.histogram(self.name + '/outputs', outputs)
return outputs def _log_vars(self):
for var in self.vars:
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])

方法:

__init__(): 获取传入的name, logging, model_size参数。初始化实例变量name, vars{}, logging, sparse_inputs

_call(inputs): 定义层的计算图:获取input, 返回output.

__call__(inputs): 相当于_call()的装饰器,在实现列_call()基本功能后,丰富了其功能,这里主要通过tf.summary.histogram() 可以查看inputs与outputs分布情况的直方图。

_log_vars(): 记录所有变量。实现时主要将vars中的各个变量以直方图形式显示。

3. class Dense

Dense layer主要用于实现全连接层的基本功能。即为了最终得到 Relu(Wx + b)。

__init__(): 用于获取初始化成员变量。其中num_features_nonzero和featureless的作用目前还不清楚。

_call(): 用于实现并且返回Relu(Wx + b)

 class Dense(Layer):
"""Dense layer.""" def __init__(self, input_dim, output_dim, dropout=0.,
act=tf.nn.relu, placeholders=None, bias=True, featureless=False,
sparse_inputs=False, **kwargs):
super(Dense, self).__init__(**kwargs) self.dropout = dropout self.act = act
self.featureless = featureless
self.bias = bias
self.input_dim = input_dim
self.output_dim = output_dim # helper variable for sparse dropout
self.sparse_inputs = sparse_inputs
if sparse_inputs:
self.num_features_nonzero = placeholders['num_features_nonzero'] with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = tf.get_variable('weights', shape=(input_dim, output_dim),
dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer(),
regularizer=tf.contrib.layers.l2_regularizer(FLAGS.weight_decay))
if self.bias:
self.vars['bias'] = zeros([output_dim], name='bias') if self.logging:
self._log_vars() def _call(self, inputs):
x = inputs
x = tf.nn.dropout(x, 1 - self.dropout) # transform
output = tf.matmul(x, self.vars['weights']) # bias
if self.bias:
output += self.vars['bias'] return self.act(output)

GraphSAGE 代码解析(二) - layers.py的更多相关文章

  1. GraphSAGE 代码解析(四) - models.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  2. GraphSAGE 代码解析(三) - aggregators.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  3. GraphSAGE 代码解析(一) - unsupervised_train.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py GraphSA ...

  4. java代码解析二维码

    java代码解析二维码一般步骤 本文采用的是google的zxing技术进行解析二维码技术,解析二维码的一般步骤如下: 一.下载zxing-core的jar包: 二.创建一个BufferedImage ...

  5. GraphSAGE 代码解析 - minibatch.py

    class EdgeMinibatchIterator """ This minibatch iterator iterates over batches of samp ...

  6. asp.net C#生成和解析二维码代码

    类库文件我们在文件最后面下载 [ThoughtWorks.QRCode.dll 就是类库] 使用时需要增加: using ThoughtWorks.QRCode.Codec;using Thought ...

  7. JavaScript “跑马灯”抽奖活动代码解析与优化(二)

    既然是要编写插件.那么叫做"插件"的东西肯定是具有的某些特征能够满足我们平时开发的需求或者是提高我们的开发效率.那么叫做插件的东西应该具有哪些基本特征呢?让我们来总结一下: 1.J ...

  8. 用 TensorFlow 实现 k-means 聚类代码解析

    k-means 是聚类中比较简单的一种.用这个例子说一下感受一下 TensorFlow 的强大功能和语法. 一. TensorFlow 的安装 按照官网上的步骤一步一步来即可,我使用的是 virtua ...

  9. C#使用zxing,zbar,thoughtworkQRcode解析二维码,附源代码

    最近做项目需要解析二维码图片,找了一大圈,发现没有人去整理下开源的几个库案例,花了点时间 做了zxing,zbar和thoughtworkqrcode解析二维码案例,希望大家有帮助. zxing是谷歌 ...

随机推荐

  1. $CRS_HOME/cdata下大量数字命名的文件,占用空间大

    问题现象:    <CRS_HOME>/cdata目录下存在大量数字命名的文件,导致文件系统爆满 $ls -alrth /opt/oracle/product/CRS/cdata/crs ...

  2. 关于Vue-cli 跨域,即使是非自己的服务器也可以get到内容

    刚入门vue ,打算用vue的脚手架做一个小项目.需要用到第三方的api,无奈遇到各种各样的问题. 比如 Access-Control-Allow-Origin ,或者使用了ajax的jsonp模式之 ...

  3. select()事件默认选中文本框的全部内容,并改变其背景色和文字颜色

    1.select()事件默认选中文本框的全部内容 拿到input标签的节点,调用select()方法即可.但是我做的vue项目中调用了此方法有一个bug,单次点击会全选内容,双次点击的时候全选会闪一下 ...

  4. 【2018 CCPC网络赛 1004】Find Integer(勾股数+费马大定理)

    Problem Description people in USSS love math very much, and there is a famous math problem . give yo ...

  5. SAP ABAP 日期,时间 相关函数

    获的两个日期之间的分钟数 data min TYPE i. CALL FUNCTION 'DELTA_TIME_DAY_HOUR' EXPORTING T1 = ' T2 = ' D1 = ' D2 ...

  6. 微信小程序终于审核过了

    终于,我做的微信小程序审核结束了,虽然被退回来两次,但是第三次还是审核通过了! 加油骚年,相信自己!! 有什么问题可以评论告诉我!!

  7. 响应式布局--设置rem自适应

    //designWidth:设计稿的实际宽度值,需要根据实际设置 //maxWidth:制作稿的最大宽度值,需要根据实际设置 //这段js的最后面有两个参数记得要设置,一个为设计稿实际宽度,一个为制作 ...

  8. Java基础——继承和多态

    面向对象的编程允许从已经存在的类中定义新的类,这称为继承. 面向过程的范式重点在于方法的设计,而面向对象的范式将数据和方法结合在对象中.面向对象范式的软件设计着重于对象以及对象上的操作.面向对象的方法 ...

  9. Python的scrapy之爬取豆瓣影评和排名

    基于scrapy框架的爬影评 爬虫主程序: import scrapy from ..items import DoubanmovieItem class MoviespiderSpider(scra ...

  10. go学习笔记-面向对象(Methods, Interfaces)

    面向对象(Methods, Interfaces) Method method是附属在一个给定的类型上的,他的语法和函数的声明语法几乎一样,只是在func后面增加了一个receiver(也就是meth ...