Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on the first coordinate. Let \(A\) be the subspace of \(\mathbb{R}\times\mathbb{R}\) consisting of all points \(x \times y\) for which either \(x \geq 0\) or \(y = 0\) (or both); let \(q: A \rightarrow \mathbb{R}\) be obtained by restricting \(\pi_1\). Show that \(q\) is a quotient map that is neither open nor closed.

Proof (a) Show \(q\) is a quotient map.

The projection map \(\pi_1\) is continuous because the pre-image of any open set \(U\) in \(\mathbb{R}\) under \(\pi_1\) is \(U \times \mathbb{R}\), which is open in the product space \(\mathbb{R}\times\mathbb{R}\). Then its restriction \(q\) is also continuous due to Theorem 18.2.

According to the illustrated domain of \(q\) in Figure 1 which is marked in light grey, it is obvious that \(q\) is surjective. It also shows the three types of saturated open sets in \(A\) with respect to \(q\), which are marked in red:

  • \((a,b) \times \{0\}\) with \(a < 0\) and \(b \leq 0\) and its image under \(q\) is \((a, b)\).
  • \((a,b) \times \mathbb{R}\) with \(a \geq 0\) and \(b > 0\) and its image under \(q\) is \((a, b)\).
  • \((a, 0) \times \{0\} \cup [0,b) \times \mathbb{R}\) with \(a < 0\) and \(b > 0\). Because a map preserves set union operation, its image under \(q\) is \((a, b)\).

It can be seen that for the three types of saturated open sets, their images are all open in \(\mathbb{R}​\). Meanwhile, arbitrary union of the above three types saturated open sets is also a saturated open set with its image open in \(\mathbb{R}​\). Therefore, \(q​\) is a quotient map.

Figure 1. Illustration of the domain of \(q\) and saturated open sets in \(A\).

(b) Show \(q\) is neither an open nor a closed map.

Let \(U = [0, 1) \times (1, 2)\) be an open set of \(A\) in the subspace topology, which is not saturated. \(q(U) = [0, 1)\) is not open in \(\mathbb{R}\). Hence \(q\) is not an open map.

Let \(U = \{(x,y) \vert xy = 1 \;\text{and}\; x > 0 \}\) which is closed in \(\mathbb{R} \times \mathbb{R}\). According to Theorem 17.2, \(U\) is also closed in the subspace \(A\). Then \(q(U)=(0,+\infty)\), which is not closed in \(\mathbb{R}\). Hence \(q\) is not a closed map.

Comment This exercise shows that a function being open or closed map is a sufficient but not a necessary condition for the function to be a quotient map.

James Munkres Topology: Sec 22 Exer 3的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  3. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  4. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  7. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  8. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. VS2010查看源码对应的汇编语言

    在学习c++中const关键字的过程中,经常会看到各种寄存器.汇编指令分析,像下面的图这样 左图是g++中反汇编的效果,右图是vs中反汇编的效果. 如果我们想要查看源码所对应的汇编语言,应该怎么操作呢 ...

  2. 【一本通1248:Dungeon Master&&洛谷UVA532 Dungeon Master】

    若不会广搜转向[广搜] [题目描述] 这题是一个三维的迷宫题目,其中用‘.’表示空地,‘#’表示障碍物,‘S’表示起点,‘E’表示终点,求从起点到终点的最小移动次数,解法和二维的类似,只是在行动时除了 ...

  3. Tomcat系列(9)——Tomcat 6方面调优(内存,线程,IO,压缩,缓存,集群)

    核心部分 内存 线程 IO 压缩 缓存 集群 一.JVM内存优化 Tomcat内存优化,包括内存大小,垃圾回收策略. Windows 下的catalina.bat,Linux 下的catalina.s ...

  4. jQuery第1天

    概念 jQuery 是一个 JavaScript 库,其实就是通过 原生JS 封装了的很多的 方法 和 属性. JS 库特点 JavaScript 库:由第三方开发者基于原生 JS 基础上,封装了很多 ...

  5. ArcGis Classic COM Add-Ins插件dll的安装与卸载

    本文是去年<ArcGis Classic COM Add-Ins插件开发的一般流程 C#>一文(以下称“开发流程”)的后续.“开发流程”中写到会有“安装与卸载”系列的文章,今天把它补上. ...

  6. 076、创建Rex-Ray volume (2019-04-23 周二)

    参考https://www.cnblogs.com/CloudMan6/p/7624556.html   前面我们安装部署了 Rex-Ray ,并且成功配置 Virtualbox backend ,今 ...

  7. CentOS Linux change IP Address

    1.change network card configure edit: vi /etc/sysconfig/network-scripts/ifcfg-eth0 ps:notice HWADDR! ...

  8. 第4章学习小结_串(BF&KMP算法)、数组(三元组)

    这一章学习之后,我想对串这个部分写一下我的总结体会. 串也有顺序和链式两种存储结构,但大多采用顺序存储结构比较方便.字符串定义可以用字符数组比如:char c[10];也可以用C++中定义一个字符串s ...

  9. vue 开发和生产的跨域问题

    开发阶段 在开发环境与后端调试的时候难免会遇到跨域问题,在 vue 项目中常用的是 proxyTable,这个用起来很方便. 打开 config 文件夹下面的 index.js,找到 dev 开发模式 ...

  10. Centos7.2正常启动关闭CDH5.16.1

    1.正常的启动.关闭流程     关闭流程 cluster1 stop Cloudera Management Service stop 4台agent:systemctl stop cloudera ...