Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on the first coordinate. Let \(A\) be the subspace of \(\mathbb{R}\times\mathbb{R}\) consisting of all points \(x \times y\) for which either \(x \geq 0\) or \(y = 0\) (or both); let \(q: A \rightarrow \mathbb{R}\) be obtained by restricting \(\pi_1\). Show that \(q\) is a quotient map that is neither open nor closed.

Proof (a) Show \(q\) is a quotient map.

The projection map \(\pi_1\) is continuous because the pre-image of any open set \(U\) in \(\mathbb{R}\) under \(\pi_1\) is \(U \times \mathbb{R}\), which is open in the product space \(\mathbb{R}\times\mathbb{R}\). Then its restriction \(q\) is also continuous due to Theorem 18.2.

According to the illustrated domain of \(q\) in Figure 1 which is marked in light grey, it is obvious that \(q\) is surjective. It also shows the three types of saturated open sets in \(A\) with respect to \(q\), which are marked in red:

  • \((a,b) \times \{0\}\) with \(a < 0\) and \(b \leq 0\) and its image under \(q\) is \((a, b)\).
  • \((a,b) \times \mathbb{R}\) with \(a \geq 0\) and \(b > 0\) and its image under \(q\) is \((a, b)\).
  • \((a, 0) \times \{0\} \cup [0,b) \times \mathbb{R}\) with \(a < 0\) and \(b > 0\). Because a map preserves set union operation, its image under \(q\) is \((a, b)\).

It can be seen that for the three types of saturated open sets, their images are all open in \(\mathbb{R}​\). Meanwhile, arbitrary union of the above three types saturated open sets is also a saturated open set with its image open in \(\mathbb{R}​\). Therefore, \(q​\) is a quotient map.

Figure 1. Illustration of the domain of \(q\) and saturated open sets in \(A\).

(b) Show \(q\) is neither an open nor a closed map.

Let \(U = [0, 1) \times (1, 2)\) be an open set of \(A\) in the subspace topology, which is not saturated. \(q(U) = [0, 1)\) is not open in \(\mathbb{R}\). Hence \(q\) is not an open map.

Let \(U = \{(x,y) \vert xy = 1 \;\text{and}\; x > 0 \}\) which is closed in \(\mathbb{R} \times \mathbb{R}\). According to Theorem 17.2, \(U\) is also closed in the subspace \(A\). Then \(q(U)=(0,+\infty)\), which is not closed in \(\mathbb{R}\). Hence \(q\) is not a closed map.

Comment This exercise shows that a function being open or closed map is a sufficient but not a necessary condition for the function to be a quotient map.

James Munkres Topology: Sec 22 Exer 3的更多相关文章

  1. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  2. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  3. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  4. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

  5. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  6. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  7. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  8. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  9. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

随机推荐

  1. Mac下查看已安装的jdk版本及其安装目录

    1.打开终端,输入:/usr/libexec/java_home -V 注意:输入命令参数区分大小写(-v是不对的,必须是-V) 2.如图:为输入命令: 当前Mac已安装jdk目录: Mac默认使用的 ...

  2. MVN TEST指定运行脚本

    clean:表示将你上一次编译生成的一些文件删除 test:表示只执行测试代码 >mvn clean test -Dtest=[ClassName] 运行测试类中指定的方法:这个需要maven- ...

  3. SpringBoot实现优雅的关机

    最近在公司使用了 Springboot 项目, 发现在   linux  上 通过 java -jar 命令可以十分安全的运行, 但是 当我们需要关闭它的时候呢? 难道  登陆服务器 kill 线程? ...

  4. 内核空间内存申请函数kmalloc kzalloc vmalloc的区别

    我们都知道在用户空间动态申请内存用的函数是 malloc(),这个函数在各种操作系统上的使用是一致的,对应的用户空间内存释放函数是 free().注意:动态申请的内存使用完后必须要释放,否则会造成内存 ...

  5. 请求转发 和 URL 重定向

    五 请求转发 和 URL 重定向 1 请求转发和重定向 干什么用? 是我们在java后台servlet中 由一个servlet跳转到 另一个 servlet/jsp 要使用的技术 前端发送请求到后台 ...

  6. Cmake出现CMake Error: Could not find CMAKE_ROOT !!!

    试了很多方式, 其实只需要这一句话!!!!!! hash -r

  7. Ext.net MessageBox提示

    Ext.MessageBox.confirm("选择全部", "确定选择?", function (btn) { if (btn !== "yes&q ...

  8. nodeJS模块寻址规则

    引子 阮一峰一则教程中, 将应用放置在  npm 模块安装目录同等级的目录(https://github.com/ruanyf/webpack-demos)下. 但是应用目录文件中, 引用标准库的使用 ...

  9. 模拟stringBeanFactory解析xml

    思路:根据源码分析,将配置Bean类信息存放到xml文件中,通过解析xml, 然后反射拿到对象 存放到集合中 这里选择hashmap(键放置类名,值放置对象)存放,使用时使用get方法通过键(类名)拿 ...

  10. selenium定位方式-获取标签元素:find_element_by_xxx

    定位方式取舍# 唯一定位方式.多属性定位.层级+角标定位(离目标元素越近,相对定位越好) # 推荐用css selector(很少用递进层次的定位)# 什么时候用xpath呢? 当你定位元素时,必须要 ...