动态规划——Valid Permutations for DI Sequence
We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for "decreasing" and "increasing".)
A valid permutation is a permutation P[0], P[1], ..., P[n] of integers {0, 1, ..., n}, such that for all i:
- If
S[i] == 'D', thenP[i] > P[i+1], and; - If
S[i] == 'I', thenP[i] < P[i+1].
How many valid permutations are there? Since the answer may be large, return your answer modulo 10^9 + 7.
Example 1:
Input: "DID"
Output: 5
Explanation:
The 5 valid permutations of (0, 1, 2, 3) are:
(1, 0, 3, 2)
(2, 0, 3, 1)
(2, 1, 3, 0)
(3, 0, 2, 1)
(3, 1, 2, 0) 这道题目出自LeetCode,可以采用动态规划方法来解决 这篇博客主要是对LeetCode给出的第一种时间复杂度为O(n^3)的动态规划解法进行解释,题目的大意不再具体解释,有点英文基础的查查百度也能知道
这个题说的是个什么意思。由于采用的是动态规划解法,所以要找出状态和状态转移方程。LeetCode给的那个解法里面把状态dp[i][j]确定为以下的含义:
我们每次只注重最后一个数字在整个数组序列中 小->大 排列后的位置,如果给数组编号为i = 0、1、...、n,我们关注的焦点dp[i][j]可以解释为长度为i+1的数组中某个方案中
其最后一个数字即第i个数字在这i+1个数字中处于第j+1小位置的方案的数量,比如dp[0][0]的意义就是长度为长度为1的数组{0}按字符串S的要求下重新排列后的新数组其第0个数字在整个数组中排最小的方案数字,而且易知dp[0][0]=1。
而且dp[0]只用dp[0][0]这一个元素,其他的用不上,对于每个i = 0、1、...、n,我们只用dp[i][0..i]这些元素。
状态转移方程的解释更加复杂,如果S[i-1]=='D',递减,则p[i]<p[i-1],这个时候dp[i][j]是所有dp[i-1][j<=k<=i-1]的和,k之所以小于i是因为对于dp[i-1]来说它一共就i个成员,下标访问到i会越界,k大等于j的原因不好解释,
有一个替换的问题在里面,因为dp[i]比dp[i-1]多一个元素,它们所代表的数组也是前者比后者多一个,由于dp[i]所属的数组方案中按 小->大的数组和dp[i-1]的那个数组中第k(1<=k<=i)个数字是一样的,这里我不知道怎么叙述好,
反正就是dp[i]所代表的那个长的最后一位可以使用dp[i-1]所代表的那个短的最后一位,因为是递减,可以把dp[i]代表的数组中多出来的那一个最大的数组顶在倒数第二个位置上;如果S[i-1]=='T',由于dp[i]所属的数组方案中按 小->大
的数组和dp[i-1]的那个数组中第k(1<=k<=i)个数字是一样的,dp[i][j]是所有dp[i-1][0<=k<j]的和。这个题的思路上确实是比较复杂的,也不是很好叙述清楚它的思路。这个题最后一个注意点就是要求模,记住每次求模即可。 下面直接上代码:
int numPermsDISequence(string S){
int MOD = ;
int n = S.length();
int**dp = new int*[n + ];
for (int i = ; i <= n; i++)
dp[i] = new int[n + ];
for (int i = ; i <= n;i++)
for (int j = ; j <= n; j++){
if (i == )dp[i][j] = ;
else dp[i][j] = ;
}
for (int i = ; i <= n; i++){
for (int j = ; j <= i; j++){
if (S[i - ] == 'D'){
for (int k = j; k < i; k++){
dp[i][j] += dp[i - ][k];
dp[i][j] %= MOD;
}
}
else{
for (int k = ; k < j; k++){
dp[i][j] += dp[i - ][k];
dp[i][j] %= MOD;
}
}
}
}
for (int i = ; i <= n; i++){
for (int j = ; j <= n; j++)
cout << dp[i][j] << " ";
cout << endl;
}
int ans = ;
for (int i = ; i <= n; i++){
ans += dp[n][i];
ans %= MOD;
}
for (int i = ; i <= n; i++)
delete[]dp[i];
delete[]dp;
return ans;
}
动态规划——Valid Permutations for DI Sequence的更多相关文章
- [LeetCode] 903. Valid Permutations for DI Sequence DI序列的有效排列
We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...
- [Swift]LeetCode903. DI 序列的有效排列 | Valid Permutations for DI Sequence
We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...
- 903. Valid Permutations for DI Sequence
We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...
- leetcode903 Valid Permutations for DI Sequence
思路: dp[i][j]表示到第i + 1个位置为止,并且以剩下的所有数字中第j + 1小的数字为结尾所有的合法序列数. 实现: class Solution { public: int numPer ...
- [Algo] 66. All Valid Permutations Of Parentheses I
Given N pairs of parentheses “()”, return a list with all the valid permutations. Assumptions N > ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- All LeetCode Questions List 题目汇总
All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...
- leetcode hard
# Title Solution Acceptance Difficulty Frequency 4 Median of Two Sorted Arrays 27.2% Hard ...
- 【LeetCode】分治法 divide and conquer (共17题)
链接:https://leetcode.com/tag/divide-and-conquer/ [4]Median of Two Sorted Arrays [23]Merge k Sorted Li ...
随机推荐
- shell 通过EOF在脚本中输入需要的用户名或密码
参考地址:https://www.cnblogs.com/liyuanhong/p/10390786.html expect使用参考:https://www.cnblogs.com/liyuanhon ...
- Pandas系列(十四)- 实战案例
一.series import pandas as pd import string #创建Series的两种方式 #方式一 t = pd.Series([1,2,3,4,43],index=list ...
- CMDB资产管理系统开发【day26】:admin action
本节目标 审核写到数据库,我就单独写一个如下的 页面 单机go后就跳转到如下图界面,我们这节课的目标就是写一个这样的页面 asset\admin.py部分代码 注释如下: class NewAsset ...
- 验证性控件的使用--验证两个文本框至少有一个不为空CustomValidator
转:http://blog.163.com/zhaowencong_2010/blog/static/20402815220122103155643/ 有时候我们在注册一个帐号时要求我们留下电话号码, ...
- 源码来袭:call、apply手写实现与应用
关于this指向可以了解我的另一篇博客:JavaScript中的this指向规则. 一.call与apply的使用 回顾call与apply的this指向: var value = "win ...
- [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...
- sublime 浏览器快捷键设置
之前每次忘掉在哪打开,这次认真记一下 菜单栏Preferences-->Package Settings-->Side Bar-->Key Binding-Users [ // ch ...
- Leetcode#521. Longest Uncommon Subsequence I(最长特殊序列 Ⅰ)
题目描述 给定两个字符串,你需要从这两个字符串中找出最长的特殊序列.最长特殊序列定义如下:该序列为某字符串独有的最长子序列(即不能是其他字符串的子序列). 子序列可以通过删去字符串中的某些字符实现,但 ...
- 集合-Collections工具
1.定义 Collections是集合类的一个工具类,它提供了一系列静态方法用于对容器中的元素进行排序和搜索等一系列操作. 注:Collection是一个集合接口,而Collections是一个有着操 ...
- zTree动态初始化树形结构加载
zTree动态加载初始化,纠结了一小下.最终还是做出来了.注意动态获取数据在前,初始化树形结构放在成功的回调函数中,并放在$(document).ready(function () {})中: $(d ...