hdu 3480 Division(四边形不等式优化)
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that

and the total cost of each subset is minimal.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int dp[][]; //dp[i][j] 表示前i个人 分组成j组
int s[][]; //决策数组
int a[];
int main(){
ios::sync_with_stdio(false);
int t;
cin>>t;
int w=;
while(t--){
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>a[i];
}
sort(a+,a++n); //排序后满足一个区间内的值是首尾的差平方
for(int i=;i<=n;i++){ //初始化边界
dp[i][]=(a[i]-a[])*(a[i]-a[]); //前i个人分成1组
s[i][]=; //初始化决策数组的左边界
}
for(int j=;j<=m;j++){
s[n+][j]=n-; //初始化决策数组的右边界
for(int i=n;i>=j;i--){
dp[i][j]=inf;
for(int k=s[i][j-];k<=s[i+][j];k++){ //四边形不等式优化
if(dp[i][j]>dp[k][j-]+(a[i]-a[k+])*(a[i]-a[k+])){
dp[i][j]=dp[k][j-]+(a[i]-a[k+])*(a[i]-a[k+]);
s[i][j]=k;
}
}
}
}
cout<<"Case "<<++w<<": ";
cout<<dp[n][m]<<endl;
}
return ;
}
hdu 3480 Division(四边形不等式优化)的更多相关文章
- 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- HDU 3516 DP 四边形不等式优化 Tree Construction
设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...
- HDU 3480 Division(斜率优化+二维DP)
Division Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others) Tota ...
- HDU 3480 Division DP斜率优化
解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...
- HDU 3506 DP 四边形不等式优化 Monkey Party
环形石子合并问题. 有一种方法是取模,而如果空间允许的话(或者滚动数组),可以把长度为n个换拓展成长为2n-1的直线. #include <iostream> #include <c ...
- hdu 3480 Division(斜率优化DP)
题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
随机推荐
- Android 启动APP时黑屏白屏的解决方案
在开发中,我们在启动app的时候,屏幕会出现一段时间的白屏或者黑屏,不同设备时间长短不同.很影响用户体验. 首先分析一下,产生这个现象的原因,当我们在启动一个应用时,系统会去检查是否已经存在这样一个进 ...
- linux下执行QT可执行文件报错
老样子,不多BiBi,直接进入主题! 有时候在linux下编译好QT程序,用QTCreator运行没问题,打包移植到另一台机器上,用命令./XX执行就会报错:error while loading s ...
- Vue一个案例引发「动画」的使用总结
项目开发中动画有着很重要的作用,而且也是用到的地方非常多,例如:鼠标的进入离开,弹窗效果,组件的显示隐藏,列表的切换等等,可以说我们网页上的动画无处不在,也有人说了,这些东西也可以不使用动画. 对,你 ...
- c/c++ 多线程 层级锁
多线程 层级锁 当要同时操作2个对象时,就需要同时锁定这2个对象,而不是先锁定一个,然后再锁定另一个.同时锁定多个对象的方法:std::lock(对象1.锁,对象2.锁...) 但是,有的时候,并不能 ...
- 删除网络中的本地连接*x等
1.运行-regedit 打开注册表 定位到 HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Control Network {4D36E972-E325-11 ...
- LeetCode算法题-To Lower Case(Java实现)
这是悦乐书的第301次更新,第320篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第169题(顺位题号是709).实现具有字符串参数str的函数ToLowerCase() ...
- idea spring boot
1 如何使用IntelliJ IDEA 配置Maven https://blog.csdn.net/westos_linux/article/details/78968012 2.Maven将中央仓库 ...
- css设置文字上下居中,一行文字居中,两行或多行文字同样居中。
转:https://www.cnblogs.com/handsomeBoys/p/6599062.html HTML: <div class="book-detail-store-it ...
- 3.20 总结 java程序流程控制
- Jenkins之Job建立-运行本地脚本
新建一个自由风格的项目,运行本地脚本 1.点击菜单栏中的“新任务” 2.进入该页面后输入一个项目名称,然后选择“构建一个自由风格的软件项目”,滑动到最底端,点击ok(在左下角) 3.进入下图页面后 “ ...