Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that

and the total cost of each subset is minimal.

 
Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

 
Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18
 
题意:求n个数分成m个集合 要求花费的最小值
思路:我们首先要求出状态转移方程dp[i][j]=min(dp[i][j],dp[k][j-1]+(a[i]-a[k+1])^2) 这里我们可以用四边形不等式优化(打表可知)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int dp[][]; //dp[i][j] 表示前i个人 分组成j组
int s[][]; //决策数组
int a[];
int main(){
ios::sync_with_stdio(false);
int t;
cin>>t;
int w=;
while(t--){
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>a[i];
}
sort(a+,a++n); //排序后满足一个区间内的值是首尾的差平方
for(int i=;i<=n;i++){ //初始化边界
dp[i][]=(a[i]-a[])*(a[i]-a[]); //前i个人分成1组
s[i][]=; //初始化决策数组的左边界
}
for(int j=;j<=m;j++){
s[n+][j]=n-; //初始化决策数组的右边界
for(int i=n;i>=j;i--){
dp[i][j]=inf;
for(int k=s[i][j-];k<=s[i+][j];k++){ //四边形不等式优化
if(dp[i][j]>dp[k][j-]+(a[i]-a[k+])*(a[i]-a[k+])){
dp[i][j]=dp[k][j-]+(a[i]-a[k+])*(a[i]-a[k+]);
s[i][j]=k;
}
}
}
}
cout<<"Case "<<++w<<": ";
cout<<dp[n][m]<<endl;
}
return ;
}

hdu 3480 Division(四边形不等式优化)的更多相关文章

  1. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  2. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  3. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  4. HDU 3480 Division(斜率优化+二维DP)

    Division Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others) Tota ...

  5. HDU 3480 Division DP斜率优化

    解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...

  6. HDU 3506 DP 四边形不等式优化 Monkey Party

    环形石子合并问题. 有一种方法是取模,而如果空间允许的话(或者滚动数组),可以把长度为n个换拓展成长为2n-1的直线. #include <iostream> #include <c ...

  7. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  8. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  9. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

随机推荐

  1. 微信小程序(五) 利用模板动态加载数据

    利用模板动态加载数据,其实是对上一节静态数据替换成动态数据:

  2. <4>Python切片功能剖析

    引用文章:https://mp.weixin.qq.com/s/NZ371nKs_WXdYPCPiryocw 切片基础法则: (1)公式,禁止0. (2)i, n同号:从序列的第i位索引起,向右取n- ...

  3. WPF:在DataTemplate中使用DataType

    DataTemplate中的DataType的功能实际上和Style中的TargetType很类似. 在Style中,使用了TargetType之后,如果不定义Style的Key,那么这个Style将 ...

  4. Several ports (8005, 8080, 8009) required by Tomcat v9.0 Server at localhost

    Several ports (8005, 8080, 8009) required by Tomcat v9.0 Server at localhost 问题:Tomcat服务器的端口被占用 解决: ...

  5. Linux分页机制之分页机制的实现详解--Linux内存管理(八)

    1 linux的分页机制 1.1 四级分页机制 前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制, ...

  6. Linux内存描述之内存节点node--Linux内存管理(二)

    1 内存节点node 1.1 为什么要用node来描述内存 这点前面是说的很明白了, NUMA结构下, 每个处理器CPU与一个本地内存直接相连, 而不同处理器之前则通过总线进行进一步的连接, 因此相对 ...

  7. 高德地图 Service 创建服务 USERKEY_PLAT_NOMATCH

    在使用高的地图 创建服务的时候 { "errmsg": "USERKEY_PLAT_NOMATCH", "errcode": 10009, ...

  8. topjui中datagrid增删改查

    1.掌握datagrid的创建方式在html中直接定义与在js中定义 可参考easyui的官方文档:http://www.jeasyui.net/plugins/183.html 2.实现代码如下:重 ...

  9. DB2批量插入性能对比

    import ibm_db import random import time first_names = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏' \ '陶姜戚谢邹喻柏水窦章 ...

  10. 关于 pyspider Web预览界面太小的解决方法

    本人最近在学习pyspider时,遇到Web预览界面太小而无法很好的进行开发,于是在网上搜索解决方法. 准备: css代码: body{margin:;padding:;height:%;overfl ...