Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equations. J. Math. Fluid Mech. 12 (2010), no. 2, 171--180] 中, 作者证明了如果
$$u\times\f{\om}{|\om|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=1,\quad 3<q\leq\infty,$$
或
$$\om\times\f{u}{|u|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=2,\quad \f{3}{2}<q\leq\infty,$$
则解光滑.
Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$的更多相关文章
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Cross Product
Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- 向量 dot cross product 点积叉积 几何意义
向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...
随机推荐
- RabbitMQ安装,Windows下
一.下载安装ERLANG语言 otp_win64_20.3.exe 一直下一步.然后设置环境变量 ERLANG_HOME C:\Program Files\erl9.3 二.安装RabbitMQ ...
- Python开发【第一篇】基础题目一
1.求1-2+3-4+5.....99的所有数的和 n = 1 s = 0 while n<100: temp = n%2 if temp == 0: #偶数 s = s-n else: s = ...
- 清除被占用的8080端口,否则npm run dev无法正常运行
解决方案一: 1. 打开git-bash2. 输入:netstat -ano查看所有端口信息,如图,找到端口 8080,以及对应的 PID 3.输入:tskill PID 即可杀死进程 解决方案二: ...
- 使用springMVC时的web.xml配置文件
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" " ...
- leetcode 136. Single Number 、 137. Single Number II 、 260. Single Number III(剑指offer40 数组中只出现一次的数字)
136. Single Number 除了一个数字,其他数字都出现了两遍. 用亦或解决,亦或的特点:1.相同的数结果为0,不同的数结果为1 2.与自己亦或为0,与0亦或为原来的数 class Solu ...
- android H5支付 网络环境未能通过安全验证,请稍后再试
android做混合开发微信H5支付时碰到的一个问题. 解决办法:把所使用的WebView中重新如下方法即可 webView.setWebViewClient(new WebViewClient() ...
- Golang 入门系列(四)如何理解interface接口
前面讲了很多Go 语言的基础知识,包括go环境的安装,go语言的语法等,感兴趣的朋友,可以先看看之前的文章.https://www.cnblogs.com/zhangweizhong/category ...
- Facebook第三方网页登录(JavaScript SDK)
文档网址:https://developers.facebook.com/docs/facebook-login/web#logindialog 一.应用配置 https://www.faceboo ...
- git完全cli指南之详细思维导图整理分享
一直以来都觉得 在开发过程中 能用命令行的还是用命令行 能用快捷键的就要快捷键 前期可能要点学习成本 但是熟练后带来的好处还是非常可观的 所以一直坚持使用命令行的方式来使用git 基本上每个操作都能心 ...
- websocket作用及意义
Browser已经支持http协议,为什么还要开发一种新的WebSocket协议呢?我们知道http协议是一种单向的网络协议,在建立连接后,它只允许Browser/UA(UserAgent)向WebS ...