在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equations. J. Math. Fluid Mech. 12 (2010), no. 2, 171--180] 中, 作者证明了如果
$$u\times\f{\om}{|\om|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=1,\quad 3<q\leq\infty,$$

$$\om\times\f{u}{|u|}\in L^p(0,T;L^q(\bbR^3)),\quad\f{2}{p}+\f{3}{q}=2,\quad \f{3}{2}<q\leq\infty,$$
则解光滑.

Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$的更多相关文章

  1. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$

    在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...

  2. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$

    在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...

  3. Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$

    在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...

  4. Regularity criteria for NSE 5: $u_3,\om_3$

    In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...

  5. Cross Product

    Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...

  6. Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$

    In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...

  7. A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$

    In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...

  8. Regularity criteria for NSE 4: $\p_3u$

    In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...

  9. 向量 dot cross product 点积叉积 几何意义

    向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...

随机推荐

  1. Python 位操作运算符

    & 按位与运算符:参与运算的两个值,如果两个相应位都为1,则该位的结果为1,否则为0 (a & b) 输出结果 12 ,二进制解释: 0000 1100 | 按位或运算符:只要对应的二 ...

  2. isinstance_issubclass

    isinstance和issubclass分别是检验是不是对象是不是类的实例化,和子类是不是这个父类的子类 class A:pass class B(A):pass a = A() print(isi ...

  3. jquery.amaran jquery提示类使用

    <script src="ing/js/jquery-1.8.3.min.js"></script> <link rel="styleshe ...

  4. Mac下MySql初始密码设置及mysql数据库操作

    1. 首先 点击系统偏好设置 -> 点击MySQL, 在弹出的页面中,关闭服务.2. 进入终端命令输出: cd /usr/local/mysql/bin/ 命令,回车.3. 回车后,输入命令:s ...

  5. Vue-异步组件

    一般情况下,在代码开头引入组件: import Vue from 'vue' import Router from 'vue-router' import Home from '@/pages/hom ...

  6. Day3 Numerical simulation of optical wave propagation之标量衍射理论基本原理(三)

    3.标量衍射理论 光源通常不是简单地平面.球面或高斯光束波.对于更一般的情况,必须使用更老练的方法来求解标量赫姆霍兹方程,需要利用格林定理并灵活使用边界条件. 基本问题:给定源平面光场U(x1,y1) ...

  7. 控制结构(3): 状态机(state machine)

    // 上一篇:卫语句(guard clause) // 下一篇:局部化(localization) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. 前情回顾 上次分析了guar ...

  8. Java的selenium代码随笔(1)

    package ShareClass; import java.awt.AWTException;import java.awt.Robot;import java.awt.Toolkit;impor ...

  9. js中“==”与“===”区别

    直接上代码 if(2==='2'){ console.log(true) }else{ console.log(false) } //打印结果 false if(2=='2'){ console.lo ...

  10. Shell脚本中的break continue exit return

    转自:http://www.cnblogs.com/guosj/p/4571239.html break结束并退出循环 continue在循环中不执行continue下面的代码,转而进入下一轮循环 e ...