[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.2 一维反应流体力学方程组的 Lagrange 形式
1. 一维粘性热传导反应流体力学方程组的 Lagrange 形式 $$\beex \bea \cfrac{\p \tau}{\p t'}-\cfrac{\p u}{\p m}&=0,\\ \cfrac{\p u}{\p t'}+\cfrac{\p p}{\p m}-\cfrac{\p}{\p m} \sez{\sex{\cfrac{4}{3}\mu+\mu'}\rho \cfrac{\p u}{\p m}}&=F,\\ T\cfrac{\p S}{\p t'}-\sex{\cfrac{4}{3}\mu+\mu'}\rho\sex{\cfrac{\p u}{\p m}}^2 &=\cfrac{\p}{\p m}\sex{\kappa\rho \cfrac{\p T}{\p m}} -\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)TZ,\\ \cfrac{\p Z}{\p t'}&=-\bar k(\rho,p,Z)Z. \eea \eeex$$
2. 一维理想反应流体力学方程组的 Lagrange 形式 $$\beex \bea \cfrac{\p \tau}{\p t'}-\cfrac{\p u}{\p m}&=0,\\ \cfrac{\p u}{\p t'}+\cfrac{\p p}{\p m}&=F,\\ \cfrac{\p S}{\p t'} &=-\cfrac{\p S}{\p Z}\bar k(\rho,p,Z)Z,\\ \cfrac{\p Z}{\p t'}&=-\bar k(\rho,p,Z)Z. \eea \eeex$$
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.2 一维反应流体力学方程组的 Lagrange 形式的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- daily english dictation 学习笔记[1-10]
b站网址https://www.bilibili.com/video/av17188299/?p=2 1. Mother Teresa, who received a Nobel Peace Priz ...
- Mac下使用国内镜像安装Homebrew
First MBP上的brew很老了,就想把brew更新一下,顺便安装一下NodeJs.无奈更新的过程一直卡在网络下载,毫不动弹.想想,应该是Repo访问不到的原因,于是重装brew. 根据官网上的方 ...
- linux-python3.8安装
环境: centos7.5 版本:python3.8 1.依赖包安装 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-deve ...
- fliplr函数
fliplr 左右翻转矩阵 语法: B = fliplr(A) 将矩阵A的列绕垂直轴进行左右翻转 matabc 如果A是一个行向量,fliplr(A)将A中元素的顺序进行翻转. 如果A是一个列向量, ...
- Scratch不仅适合小朋友,程序员和大学老师都应该广泛使用!!!
去年接触到了Scratch这个编程工具,它是一种简易图形化编程工具,这个软件的开发团队来自于麻省理工大学称为“终身幼儿园团队”(Lifelong Kindergarten Group). 网址http ...
- vue-cli3
官网 https://cli.vuejs.org/zh/ ie11 的问题 https://stackoverflow.com/questions/52056358/vue-cli-3-project ...
- 【Swift 3.1】iOS开发笔记(四)
一.唱片旋转效果(360°无限顺时针旋转) func animationRotateCover() { coverImageView.layer.removeAllAnimations() let a ...
- HBase操作命令总结
1,如何运行HBase 1,如何查找hbase的安装目录 whereis用来查找程序的安装目录.帮助文档等等,如下: whereis hbase 结果如下,目录下一级包含bin的就是hbase的安装目 ...
- deb包转化为rpm包
deb文件格式本是ubuntu的安装文件,那么我想要在fedora中安装,需要把deb格式转化成rpm格式,我们用skype举例: 1.下载转换工具alien_8.78.tar.gz 2.deb转化成 ...
- 通过注解配置Bean
之前说的三种配置方式,都是使用XML配置,现在我们说说使用注解配置Bean. 这部分内容主要分为两个部分:使用注解配置Bean,使用注解配置Bean属性. 在classpath中扫描组件 组件扫描:S ...