设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f''(x)\leq -16. \eex$$

证明: 设 $$\bex \xi\in (0,1),\st f(\xi)=\max_{0\leq x\leq 1}f(x)=2\ra f'(\xi)=0. \eex$$ 在 $\xi$ 处由 Taylor 展式, $$\beex \bea 0=f(0)=f(\xi)+f'(\xi)(-\xi)+\cfrac{f''(\eta)}{2}(-\xi)^2,&0<\eta<\xi,\\ 0=f(1)=f(\xi)+f'(\xi)(1-\xi)+\cfrac{f''(\zeta)}{2}(1-\xi)^2,&\xi<\zeta<1. \eea \eeex$$ 于是 $$\bex f''(\eta)=-\cfrac{4}{\eta^2},\quad f''(\zeta)=-\cfrac{4}{(1-\xi)^2}. \eex$$ 若 $0<\xi\leq \cfrac{1}{2}$, 则 $$\bex \min_{0\leq x\leq 1}f''(x)\leq f''(\eta)\leq -16; \eex$$ 若 $\cfrac{1}{2}<\xi<1$, 则 $$\bex \min_{0\leq x\leq 1}f''(x)\leq f''(\zeta)=-16. \eex$$

[再寄小读者之数学篇](2014-06-23 二阶导数估计 [中国科学技术大学2013年高等数学B 考研试题])的更多相关文章

  1. [再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])

    设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b ...

  2. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  3. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  4. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  5. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  6. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  7. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  8. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  9. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

随机推荐

  1. 解决ajax get post方式提交中文参数乱码问题

    最近在工作中遇到,使用ajax get方式提交中文参数的时候出现乱码,通过上网搜索,总结出比较简单的两种解决方案: 第一种,由于tomcat默认的字符集是ISO-8859-1,修改Tomcat中的se ...

  2. js 点击复制代码 window.clipboardData.setData

    var v = document.getElementById("forcopy").value; window.clipboardData.setData('text',v); ...

  3. Hadoop从入门到精通系列之--0.Hadoop生态体系

    https://blog.csdn.net/Haidaiya/article/details/84568588#%E4%B8%80%20%E5%A4%A7%E6%95%B0%E6%8D%AE%E7%9 ...

  4. 设计模式之Template Method模式

    作用:将具体的处理交给子类 什么是Template Method模式? Template Method模式是指带有模板功能的模式,组成模板的方法被定义在父类中,且这些方法为抽象方法.子类去实现父类中的 ...

  5. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  6. 怎么在Vue的某个组件中根据组件tag标签名获取到对应的VueComponent实例呢

    1.以前玩omi框架的时候,有Omi.get方法来获取实例, ...好久没玩了,忘了.反正很喜欢该方法.2.如今想在vue里面怎么能够快速获取到对应组件标签名的的实例呢?3.文档也看过,似乎脑海中没啥 ...

  7. odoo后台实现微信公众号验证

    在微信公众号开发的其中一个步骤是微信服务器调用我们自己的网站验证身份,这一步微信服务器会传递过来4个参数,可是按照官方的写法,却无法验证通过,下面是官方的验证方法: import hashlib im ...

  8. Top Page

    Top Page 由于个人的博客中涉及了几个不同的领域.今后准备设置Index页进行一番整理 : 所有其他页面都可以从这个页面遍历 Top Page

  9. 【算法】—— LRU算法

    LRU原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 实现1 最常见的 ...

  10. python常用的基本操作

    打开cmd,pip list 可以查看python安装的所以第三方包