【BZOJ】1257: [CQOI2007]余数之和(除法分块)
题目
传送门:QWQ
分析
大佬和我说本题是除法分块,莫比乌斯反演中也有用到。
QwQ我不会莫比乌斯反演啊~
题目让我们求 $ \sum_{i=1}^n k\mod n $
然后根据$ a \mod b = a - \left \lfloor \ \frac{a}{b} \right \rfloor \times b$
原式就变成了$ n*k - \sum_{i=1}^n \frac{k}{i} \times i$
发现$ \frac{k}{i} $在一定范围内是不变的,然后计算一下就能$ O(\sqrt{n}) $内解决了
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
ll n,k,ans;
scanf("%lld%lld",&n,&k); ans=n*k;
for(ll l=,r;l<=n;l=r+){
ll t=k/l; if(t) r=min(k/t,n);
else r=n;
ans-=(l+r)*(r-l+)/*t;
// printf("--- %lld %lld %lld\n",l,r,(r-l+1)*(r-l)/2*t);
}
printf("%lld\n",ans);
return ;
}
【BZOJ】1257: [CQOI2007]余数之和(除法分块)的更多相关文章
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
- bzoj 1257: [CQOI2007]余数之和 (数学+分块)
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...
- bzoj 1257 [CQOI2007]余数之和——数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...
- bzoj1257[CQOI2007]余数之和(除法分块)
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 6117 Solved: 2949[Submit][Statu ...
- BZOJ 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 3769 Solved: 1734[Submit][St ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum( 数论 )
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i) = ∑ , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...
- BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4474 Solved: 2083[Submit][St ...
- BZOJ 1257: [CQOI2007]余数之和
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...
- [原博客] BZOJ 1257 [CQOI2007] 余数之和
题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...
随机推荐
- magento首页点击任何产品都出现404错误的问题方法
很简单,只要在其他项目上的根目录上复制一个.htaccess文件到项目跟目录下就可以 了,其实就是是设置伪静态:
- SVN 将主干的代码合并到分支上
来源:http://blog.csdn.net/u012701023/article/details/50978154 问题:开发有了项目主干,再次基础上起了一个分支,开发新的功能:因为业务需要,在上 ...
- requests.exceptions.MissingSchema
requests.exceptions.MissingSchema: Invalid URL '//p9.pstatp.com/list/pgc-image/1538380201743a84869e0 ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- ThinkPHP3.2.3整合smarty模板(三)
在smarty模板中使用thinkphp框架的U方法时要主要的问题: 1.不能直接使用{:U('Index/index')}: 2.正确的使用方法为:<!--{U("Login/log ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- Android NDK: Are you sure your NDK_MODULE_PATH variable is properly defined
遇到问题: Android NDK: jni/Android.mk: Cannot find module with tag 'XXXXXXXXX' in import path Android ND ...
- win7上搭建Android环境及调试
工欲善其事必先利其器,好记性不如烂笔头.要学习一门新的语言,首先必须得先搭环境,否则没法实践.如果之前按照网上的提示,搭建过环境,而且环境比较复杂的话,我相信隔很长一段时间后,就会忘记,到真正用的时候 ...
- tyvj1172自然数拆分
题目:http://www.joyoi.cn/problem/tyvj-1172 非常水的完全背包.物品就是1~n这n个数. 第6行有橙色的警告:this decimal constant is un ...
- 洛谷1352没有上司的舞会——树型dp
题目:https://www.luogu.org/problemnew/show/P1352 #include<iostream> #include<cstdio> using ...