Exercise:PCA in 2D

习题的链接:Exercise:PCA in 2D

pca_2d.m

close all

%%================================================================
%% Step : Load data
% We have provided the code to load data from pcaData.txt into x.
% x is a * matrix, where the kth column x(:,k) corresponds to
% the kth data point.Here we provide the code to load natural image data into x.
% You do not need to change the code below. x = load('pcaData.txt','-ascii');
figure();
scatter(x(, :), x(, :));
title('Raw data'); %%================================================================
%% Step 1a: Implement PCA to obtain U
% Implement PCA to obtain the rotation matrix U, which is the eigenbasis
% sigma. % -------------------- YOUR CODE HERE --------------------
%u = zeros(size(x, )); %You need to compute this
sigma = (x*x') ./ size(x,2); %covariance matrix
[u,s,v] = svd(sigma); % --------------------------------------------------------
hold on
plot([ u(,)], [ u(,)]);
plot([ u(,)], [ u(,)]);
scatter(x(, :), x(, :));
hold off %%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
% Now, compute xRot by projecting the data on to the basis defined
% by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE --------------------
%xRot = zeros(size(x)); % You need to compute this
xRot = u'*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure();
scatter(xRot(, :), xRot(, :));
title('xRot'); %%================================================================
%% Step : Reduce the number of dimensions from to .
% Compute xRot again (this time projecting to dimension).
% Then, compute xHat by projecting the xRot back onto the original axes
% to see the effect of dimension reduction % -------------------- YOUR CODE HERE --------------------
k = ; % Use k = and project the data onto the first eigenbasis
%xHat = zeros(size(x)); % You need to compute this
%Recovering an Approximation of the Data
xRot(k+:size(x,), :) = ;
xHat = u*xRot; % --------------------------------------------------------
figure();
scatter(xHat(, :), xHat(, :));
title('xHat'); %%================================================================
%% Step : PCA Whitening
% Complute xPCAWhite and plot the results. epsilon = 1e-;
% -------------------- YOUR CODE HERE --------------------
%xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag( ./ sqrt(diag(s)+epsilon)) * u' * x; % --------------------------------------------------------
figure();
scatter(xPCAWhite(, :), xPCAWhite(, :));
title('xPCAWhite'); %%================================================================
%% Step : ZCA Whitening
% Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE --------------------
%xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u * xPCAWhite; % --------------------------------------------------------
figure();
scatter(xZCAWhite(, :), xZCAWhite(, :));
title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done!
% You can now move onto the next PCA exercise. :)

【DeepLearning】Exercise:PCA in 2D的更多相关文章

  1. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  4. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  5. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  6. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. 【GRPC】GRPC-负载均衡

    GRPC-负载均衡 grpc nginx_百度搜索 grpc(1):Centos 安装java的grpc服务,使用haproxy进行负载均衡,nginx不支持 - freewebsys的专栏 - CS ...

  2. Linux下简单线程池的实现

    大多数的网络服务器,包括Web服务器都具有一个特点,就是单位时间内必须处理数目巨大的连接请求,但是处理时间却是比较短的.在传统的多线程服务器模型中是这样实现的:一旦有个服务请求到达,就创建一个新的服务 ...

  3. (纪录片)统计的乐趣 The Joy of Stats (2010)

    简介: 导演: 丹·希尔曼主演: Hans Rosling类型: 纪录片官方网站: www.bbc.co.uk/programmes/b00wgq0l制片国家/地区: 英国语言: 英语上映日期: 20 ...

  4. PPT模板中的”书签”

    引言 在项目中生成文档报告经常需要word中,其中的关键就是书签,通过定位和替换书签中的值来达到生成定制的报告(详见Word模板中的表格处理):但在PPT中却没有书签这个概念,所以,不能采用这种方式. ...

  5. iOS编程(双语版) - 视图 - 手工代码(不使用向导)创建视图

    如何创建一个空的项目,最早的时候XCode的项目想到中,还有Empty Application template这个选项,后来Apple把它 给去掉了. 我们创建一个单视图项目. 1) 删除main. ...

  6. HDS TrueCopy-数据远程容灾白皮书-IOPS数据

    http://wenku.it168.com/d_000767925.shtml Truecopy 安装实施-包含图 http://www.docin.com/p-261693079.html 来自: ...

  7. Android Webservices 返回多行多列数据(Dataset)

    对于之前从事.net或者java开发人员,习惯了从后台获取网格数据(多行多列DataTable),但转行从事android开发,难免会不习惯 Android调用Webservice时,如果返回值是一个 ...

  8. CyclicBarrier的用法

    CyclicBarrier是一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point).在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待, ...

  9. MySql绿色版安装步骤和方法,以及配置文件修改,Mysql服务器启动

    MySql绿色版Windows安装步骤和方法,以及配置文件修改,Mysql服务器启动 支持“标准”Markdown / CommonMark和Github风格的语法,也可变身为代码编辑器: 支持实时预 ...

  10. Java定时器Timer的使用详解

     转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6374714.html 定时器在Web开发中使用得不是很多.这里主要列举一下使用定时器的步骤,方便日后使用时查 ...