【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D
习题的链接:Exercise:PCA in 2D
pca_2d.m
close all %%================================================================
%% Step : Load data
% We have provided the code to load data from pcaData.txt into x.
% x is a * matrix, where the kth column x(:,k) corresponds to
% the kth data point.Here we provide the code to load natural image data into x.
% You do not need to change the code below. x = load('pcaData.txt','-ascii');
figure();
scatter(x(, :), x(, :));
title('Raw data'); %%================================================================
%% Step 1a: Implement PCA to obtain U
% Implement PCA to obtain the rotation matrix U, which is the eigenbasis
% sigma. % -------------------- YOUR CODE HERE --------------------
%u = zeros(size(x, )); %You need to compute this
sigma = (x*x') ./ size(x,2); %covariance matrix
[u,s,v] = svd(sigma); % --------------------------------------------------------
hold on
plot([ u(,)], [ u(,)]);
plot([ u(,)], [ u(,)]);
scatter(x(, :), x(, :));
hold off %%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
% Now, compute xRot by projecting the data on to the basis defined
% by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE --------------------
%xRot = zeros(size(x)); % You need to compute this
xRot = u'*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure();
scatter(xRot(, :), xRot(, :));
title('xRot'); %%================================================================
%% Step : Reduce the number of dimensions from to .
% Compute xRot again (this time projecting to dimension).
% Then, compute xHat by projecting the xRot back onto the original axes
% to see the effect of dimension reduction % -------------------- YOUR CODE HERE --------------------
k = ; % Use k = and project the data onto the first eigenbasis
%xHat = zeros(size(x)); % You need to compute this
%Recovering an Approximation of the Data
xRot(k+:size(x,), :) = ;
xHat = u*xRot; % --------------------------------------------------------
figure();
scatter(xHat(, :), xHat(, :));
title('xHat'); %%================================================================
%% Step : PCA Whitening
% Complute xPCAWhite and plot the results. epsilon = 1e-;
% -------------------- YOUR CODE HERE --------------------
%xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag( ./ sqrt(diag(s)+epsilon)) * u' * x; % --------------------------------------------------------
figure();
scatter(xPCAWhite(, :), xPCAWhite(, :));
title('xPCAWhite'); %%================================================================
%% Step : ZCA Whitening
% Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE --------------------
%xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u * xPCAWhite; % --------------------------------------------------------
figure();
scatter(xZCAWhite(, :), xZCAWhite(, :));
title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done!
% You can now move onto the next PCA exercise. :)
【DeepLearning】Exercise:PCA in 2D的更多相关文章
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:Vectorization
Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- 条件随机场CRF HMM,MEMM的区别
http://blog.sina.com.cn/s/blog_605f5b4f010109z3.html 首先,CRF,HMM(隐马模型),MEMM(最大熵隐马模型)都常用来做序列标注的建模,像词性标 ...
- (转)Unity3D研究院之Assetbundle的原理(六十一)
Assetbundle 是Unity Pro提供提供的功能,它可以把多个游戏对象或者资源二进制文件封装到Assetbundle中,提供了封装与解包的方法使用起来很便利. 1.预设 A ...
- 最全的spark基础知识解答
原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...
- express统一输出404页面
不玩不知道,一玩吓一跳,还真是,nodejs全局404怎么搞? 直接,res.render("404.html")有可能会报错:Node.js : Cannot find modu ...
- OpenGL ES 3.0之Uniform详解
Uniform是变量类型的一种修饰符,是OpenGL ES 中被着色器中的常量值,使用存储各种着色器需要的数据,例如:转换矩阵.光照参数或者颜色. uniform 的空间被顶点着色器和片段着色器分享 ...
- OpenStack云桌面系列【2】—OpenStack和Spice
OpenStack和VNC Openstack默认安装的訪问控制台基于VNC的.我们从Horizon进入主机实例的控制台,就是noVNC.我在之前的一篇文章里专门对noVNC也做过測试(http:// ...
- PHP http_build_query()方法
http_build_query (PHP 5) http_build_query -- 生成 url-encoded 之后的请求字符串描述 string http_build_query ( arr ...
- 【树莓派】【转】树莓派3装Android 6.0,支持Wi-Fi和蓝牙
树莓派3装Android 6.0,支持Wi-Fi和蓝牙 相信对于许多树莓派初学者(包括我)来说,Android系统的确是一个不错的选择.但国内这方面资源稀缺,经本人FQ苦寻,找到了老外的树莓派Andr ...
- Java 代码行统计(转)
package codecounter; import java.io.BufferedReader; import java.io.File; import java.io.FileNotFound ...
- python enum 枚举
http://www.cnblogs.com/codingmylife/archive/2013/05/31/3110656.html python 3.4+ from enum import Enu ...