引自:http://blog.csdn.net/liyuanbhu/article/details/49837661

OpenCV 学习笔记(模板匹配)

模板匹配是在一幅图像中寻找一个特定目标的方法之一。这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标。

在 OpenCV 中,提供了相应的函数完成这个操作。

matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 
minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置

在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两幅图像是否“相似”。 
opencv 提供了 6 种计算两幅图像相似度的方法。

  1. 差值平方和匹配 CV_TM_SQDIFF
  2. 标准化差值平方和匹配 CV_TM_SQDIFF_NORMED
  3. 相关匹配 CV_TM_CCORR
  4. 标准相关匹配 CV_TM_CCORR_NORMED
  5. 相关匹配 CV_TM_CCOEFF
  6. 标准相关匹配 CV_TM_CCOEFF_NORMED

下面就分别来介绍。首先,先给出几个符号: 
T(x,y) 用来表示我们的模板。I(x,y) 是我们的目标图像。 R(x,y) 是用来描述相似度的函数。

差值平方和匹配 CV_TM_SQDIFF

这类方法利用图像与模板各个像素差值的平方和来进行匹配,最好匹配为 0。 匹配越差,匹配值越大。

R(x,y)=∑x′,y′(T(x′,y′)−I(x+x′,y+y′))2

标准化差值平方和匹配 CV_TM_SQDIFF_NORMED

这个方法其实和差值平方和算法是类似的。只不过对图像和模板进行了标准化操作。

R(x,y)=∑x′,y′(T(x′,y′)−I(x+x′,y+y′))2∑x′,y′T(x′,y′)2∑x′,y′I(x+x′,y+y′)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

这种标准化操作可以保证当模板和图像各个像素的亮度都乘上了同一个系数时,相关度不发生变化。

也就是说当 I(x,y)和T(x,y) 变为k×I(x,y)和k×T(x,y) 时,R(x,y)不发生变化。

相关匹配 CV_TM_CCORR

这类方法采用模板和图像的互相关计算作为相似度的度量方法,所以较大的数表示匹配程度较高,0标识最坏的匹配效果。

R(x,y)=∑x′,y′(T(x′,y′)×I(x+x′,y+y′))

标准化相关匹配 CV_TM_CCORR_NORMED

这个方法和 标准化差值平方和匹配 类似,都是去除了亮度线性变化对相似度计算的影响。可以保证图像和模板同时变亮或变暗k倍时结果不变。

R(x,y)=∑x′,y′(T(x′,y′)×I(x+x′,y+y′))∑x′,y′T(x′,y′)2∑x′,y′I(x+x′,y+y′)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

相关匹配 CV_TM_CCOEFF

这种方法也叫做相关匹配,但是和上面的 CV_TM_CCORR 匹配方法还是有不通过的。简单的说,这里是把图像和模板都减去了各自的平均值,使得这两幅图像都没有直流分量。

T′(x,y)=T(x,y)−∑x′,y′T(x′,y′)w×hI′(x,y)=I(x,y)−∑x′,y′I(x′,y′)w×hR(x,y)=∑x′,y′(T′(x′,y′)×I′(x+x′,y+y′))

标准相关匹配 CV_TM_CCOEFF_NORMED

这是 OpenCV 支持的最复杂的一种相似度算法。这里的相关运算就是数理统计学科的相关系数计算方法。具体的说,就是在减去了各自的平均值之外,还要各自除以各自的方差。经过减去平均值和除以方差这么两步操作之后,无论是我们的待检图像还是模板都被标准化了,这样可以保证图像和模板分别改变光照亮不影响计算结果。计算出的相关系数被限制在了 -1 到 1 之间,1 表示完全相同,-1 表示两幅图像的亮度正好相反,0 表示两幅图像之间没有线性关系。

T′(x,y)=T(x,y)−1w×h∑x′,y′T(x′,y′)∑x′,y′T(x′,y′)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√I′(x,y)=I(x,y)−1w×h∑x′,y′I(x′,y′)∑x′,y′I(x′,y′)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾√R(x,y)=∑x′,y′(T′(x′,y′)×I′(x+x′,y+y′))

下面给个例子,我们的测试图像如下: 

我们的模板如下: 

程序中会用到 OpenCV 的函数包括:

void matchTemplate( InputArray image, InputArray templ,
OutputArray result, int method );

其中 result 是一个矩阵,返回每一个点匹配的结果。

void minMaxLoc(InputArray src, CV_OUT double* minVal,
CV_OUT double* maxVal=0, CV_OUT Point* minLoc=0,
CV_OUT Point* maxLoc=0, InputArray mask=noArray());

这个函数可以在一个矩阵中寻找最大点或最小点,并将位置返回回来。

下面是完整的测试程序。

#include <QCoreApplication>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" using namespace cv; int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
cv::Mat image = imread("D:/test.png", cv::IMREAD_COLOR );
cv::Mat templateImage = imread("D:/template.png", cv::IMREAD_COLOR); int result_cols = image.cols - templateImage.cols + 1;
int result_rows = image.rows - templateImage.rows + 1; cv::Mat result = cv::Mat( result_cols, result_rows, CV_32FC1 );
cv::matchTemplate( image, templateImage, result, CV_TM_SQDIFF ); double minVal, maxVal;
cv::Point minLoc, maxLoc, matchLoc;
cv::minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
matchLoc = minLoc; cv::rectangle( image, cv::Rect(matchLoc, cv::Size(templateImage.cols, templateImage.rows) ), Scalar(0, 0, 255), 2, 8, 0 ); imshow("", image); return a.exec();
}

输出结果是这样的。

其实上面的代码还可以封装一下。

double match(cv::Mat image, cv::Mat tepl, cv::Point &point, int method)
{
int result_cols = image.cols - tepl.cols + 1;
int result_rows = image.rows - tepl.rows + 1; cv::Mat result = cv::Mat( result_cols, result_rows, CV_32FC1 );
cv::matchTemplate( image, tepl, result, method ); double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); switch(method)
{
case CV_TM_SQDIFF:
case CV_TM_SQDIFF_NORMED:
point = minLoc;
return minVal;
break; default:
point = maxLoc;
return maxVal;
break;
}
}

利用这个封装代码,我们可以把所有的匹配方法都实验一下。并且比较一下计算速度。

int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
cv::Mat image = imread("D:/test.png", cv::IMREAD_COLOR );
cv::Mat tepl = imread("D:/template.png", cv::IMREAD_COLOR); cv::Point matchLoc;
double value;
int elapse; QTime t; t.start();
value = match(image, tepl, matchLoc, CV_TM_SQDIFF);
elapse = t.elapsed();
qDebug("CV_TM_SQDIFF Time elapsed: %d ms", elapse);
qDebug() << value; t.start();
value = match(image, tepl, matchLoc, CV_TM_SQDIFF_NORMED);
elapse = t.elapsed();
qDebug("CV_TM_SQDIFF_NORMED Time elapsed: %d ms", elapse);
qDebug() << value; t.start();
value = match(image, tepl, matchLoc, CV_TM_CCORR);
elapse = t.elapsed();
qDebug("CV_TM_CCORR Time elapsed: %d ms", elapse);
qDebug() << value; t.start();
value = match(image, tepl, matchLoc, CV_TM_CCORR_NORMED);
elapse = t.elapsed();
qDebug("CV_TM_CCORR_NORMED Time elapsed: %d ms", elapse);
qDebug() << value; t.start();
value = match(image, tepl, matchLoc, CV_TM_CCOEFF);
elapse = t.elapsed();
qDebug("CV_TM_CCOEFF Time elapsed: %d ms", elapse);
qDebug() << value; t.start();
value = match(image, tepl, matchLoc, CV_TM_CCOEFF_NORMED);
elapse = t.elapsed();
qDebug("CV_TM_CCOEFF_NORMED Time elapsed: %d ms", elapse);
qDebug() << value; cv::rectangle( image, cv::Rect(matchLoc, cv::Size(tepl.cols, tepl.rows) ), Scalar(0, 0, 255), 2, 8, 0 ); imshow("", image); return a.exec();
}

输出结果如下:

CV_TM_SQDIFF Time elapsed: 734 ms
4
CV_TM_SQDIFF_NORMED Time elapsed: 699 ms
1.43391e-08
CV_TM_CCORR Time elapsed: 638 ms
2.78957e+08
CV_TM_CCORR_NORMED Time elapsed: 710 ms
1
CV_TM_CCOEFF Time elapsed: 721 ms
2.30675e+08
CV_TM_CCOEFF_NORMED Time elapsed: 759 ms
1

如果我们先将图像都转换为灰度图,那么计算速度会快很多。

CV_TM_SQDIFF Time elapsed: 249 ms
12
CV_TM_SQDIFF_NORMED Time elapsed: 246 ms
1.29052e-07
CV_TM_CCORR Time elapsed: 208 ms
9.29857e+07
CV_TM_CCORR_NORMED Time elapsed: 242 ms
1
CV_TM_CCOEFF Time elapsed: 246 ms
7.68916e+07
CV_TM_CCOEFF_NORMED Time elapsed: 281 ms
1

基本缩短到了 1/3 。所以,如果可以用灰度图来计算,就不要用彩色图。

我们还可以去掉模板大小对匹配度的影响:

double match(cv::Mat image, cv::Mat tepl, cv::Point &point, int method)
{
int result_cols = image.cols - tepl.cols + 1;
int result_rows = image.rows - tepl.rows + 1; cv::Mat result = cv::Mat( result_cols, result_rows, CV_32FC1 );
cv::matchTemplate( image, tepl, result, method ); double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); switch(method)
{
case CV_TM_SQDIFF:
point = minLoc;
return minVal / (tepl.cols * tepl.cols);
break;
case CV_TM_SQDIFF_NORMED:
point = minLoc;
return minVal;
break;
case CV_TM_CCORR:
case CV_TM_CCOEFF:
point = maxLoc;
return maxVal / (tepl.cols * tepl.cols);
break;
case CV_TM_CCORR_NORMED:
case CV_TM_CCOEFF_NORMED:
default:
point = maxLoc;
return maxVal;
break;
}
}

这时的结果如下:

CV_TM_SQDIFF Time elapsed: 705 ms
0.000609663
CV_TM_SQDIFF_NORMED Time elapsed: 682 ms
1.43391e-08
CV_TM_CCORR Time elapsed: 615 ms
42517.5
CV_TM_CCORR_NORMED Time elapsed: 698 ms
1
CV_TM_CCOEFF Time elapsed: 703 ms
35158.5
CV_TM_CCOEFF_NORMED Time elapsed: 757 ms
1
 
 

opencv----模板匹配的更多相关文章

  1. Atitit opencv模板匹配attilax总结

    Atitit opencv模板匹配attilax总结 找一幅图像的匹配的模板,可以在一段视频里寻找出我们感兴趣的东西,比如条形码的识别就可能需要这样类似的一个工作提取出条形码区域(当然这样的方法并不鲁 ...

  2. Atitit opencv 模板匹配

    Atitit opencv 模板匹配 1.1. 图片1 1.2. Atitit opencv 模板匹配  6中匹配算法貌似效果区别不大1 1.3. 对模板缩放的影响 一般的缩放可以,太大了就歇菜了.. ...

  3. opencv 模板匹配与滑动窗口(单匹配) (多匹配)

    1单匹配: 测试图片:   code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <open ...

  4. OpenCV模板匹配函数matchTemplate详解

    参考文档:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/template_matchin ...

  5. OpenCV——模板匹配

    minMaxLoc函数: void minMaxLoc( const Mat& src, double* minVal, double* maxVal=0, Point* minLoc=0, ...

  6. opencv::模板匹配(Template Match)

    模板匹配介绍 模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域. 所以模板匹配首先需要一个模板图像T(给定的子图像) 另外需要一个待检测的图像-源图像S 工作方法,在带检测图像上,从左到右,从 ...

  7. 关于opencv模板匹配功能的项目测试记录

    模板匹配功能介绍的很好的一篇博客:https://www.cnblogs.com/XJT2018/p/9934139.html 就如上述博客所言:“若原图像中的匹配目标发生旋转或大小变化,该算法无效. ...

  8. opencv模板匹配查找图像(python)

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np from cv2 import COLOR_B ...

  9. opencv 模板匹配, 已解决模板过大程序不工作的bug

    #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv ...

  10. opencv模板匹配有趣的链接

    https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_template_matching/py_template_matchi ...

随机推荐

  1. SharePoint 2013 How to Backup Site Collection Automatically With a PowerShell Script

    In this post I will introduce a way how to run a script for backing up SharePoint data which could b ...

  2. SharePoint 创建 Lookup 类型的Site Column解决跨站问题

    在某些情况下,我们需要去引用其他List中的数据,比如在网站集(Site Collection)上有个List叫Country,在其子网站(WebSite)有个List叫Employee,如果要在子S ...

  3. 在vmware fusion上安装linux系统然后再安装vmware tools出现问题

    /usr/lib/vmware-tools] In which directory do you want to install the documentation files? [/usr/shar ...

  4. mysql中查询一个字段属于哪一个数据库中的哪一个表的方式

    mysql中查询一个字段具体是属于哪一个数据库的那一张表:用这条语句就能查询出来,其中 table_schema 是所在库, table_name 是所在表 --mysql中查询某一个字段名属于哪一个 ...

  5. Thrift 简单实现C#通讯服务程序 (跨语言 MicroServices)

    Thrift是一种可伸缩的跨语言服务框架,它结合了功能强大的软件堆栈的代码生成引擎,以建设服务,工作效率和无缝地与C++,C#,Java,Python和PHP和Ruby结合.thrift允许你定义一个 ...

  6. Atitit 如何设置与安放知识的trap陷阱  知识聚合 rss url聚合工具 以及与trap的对比

    Atitit 如何设置与安放知识的trap陷阱  知识聚合 rss url聚合工具 以及与trap的对比 1.1. 安放地点 垂直知识网站csdn cnblogs等特定频道栏目,大牛博客 1 1.2. ...

  7. ios 精简日历

    网上其他人写的日历类功能都很齐全,比较繁杂,对于想看看日历基础实现然后自己绘制日历的我来说不太方便,就自己整理了一个极精简的日历出来,大家看了之后应该能多少理解日历该怎么自定义,很简单. 我的小dem ...

  8. HTML5学习笔记(十八):闭包

    高阶函数 JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,也可以返回一个函数,这种函数就称之为高阶函数. 函数作为参 ...

  9. 菜鸟学Java(四)——JSP内置对象

    学习JavaWeb就离不开JSP,而学习JSP又不得不了解它常用的九个内置对象.今天来做一个简单介绍. request Request封装了用户提交的信息,通过调用Request相应的方法可以获取封装 ...

  10. 腾讯云主机安装登录mysql失败--解决方案[重置root密码并实现远程连接]

    登录MySQL时报错:Access denied for user 'root'@'localhost' (using password: YES) 解决步骤: 1.使用ssh工具连接主机,使用mys ...