【MLE】最大似然估计Maximum Likelihood Estimation
已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
假设模型满足某种总体分布,但是不知道模型的参数,通过样本去估计参数。
最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。
最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:
首先,假设
为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

回到上面的“模型已定,参数未知”的说法,此时,我们已知的为
,未知为θ,故似然定义为:

在实际应用中常用的是两边取对数,得到公式如下:

其中
称为对数似然,而
称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?
我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,
P(Data | M)
= P(x1,x2,…,x100|M)
= P(x1|M)P(x2|M)…P(x100|M)
= p^70(1-p)^30.
那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。
70p^69(1-p)^30-p^70*30(1-p)^29=0。
解方程可以得到p=0.7。
在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。
假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?
P(Data | M) = ?
根据公式

可得:
对μ求导可得
,则最大似然估计的结果为μ=(x1+x2+…+xn)/n
由上可知最大似然估计的一般求解过程:
(1) 写出似然函数;
(2) 对似然函数取对数,并整理;
(3) 求导数 ;
(4) 解似然方程
注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。
【MLE】最大似然估计Maximum Likelihood Estimation的更多相关文章
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
- 最大似然估计(Maximum likelihood estimation)
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...
- 最大似然预计(Maximum likelihood estimation)
一.定义 最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...
- 最大似然估计(Maximum likelihood estimation)(通过例子理解)
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...
- 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)
maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...
- MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...
随机推荐
- Xcode之断点调试
断点类型: 1.异常断点 异常断点是代码出现问题导致编译器抛出异常时触发的断点.它在断点导航器中设置.点击+号,选择Exception Breakpoint选项.如下图3-1所示 Exception选 ...
- iOS中消息传递方式
iOS中消息传递方式 在iOS中有很多种消息传递方式,这里先简单介绍一下各种消息传递方式. 1.通知:在iOS中由通知中心进行消息接收和消息广播,是一种一对多的消息传递方式. NSNotificati ...
- 【C语言】练习1-21
题目来源:<The C programming language>中的习题 练习1-21:编写程序entab,将空格串替换为最好数量的制表符和空格,但要保持单词之间的间隔不变. 思路: 对 ...
- 《JAVA与模式》之解释器模式 (转载)
一.引子 其实没有什么好的例子引入解释器模式,因为它描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发编译器中:在实际应用中,我们可能很少碰到去构造一个语言的文法的情况. 虽然你几乎用 ...
- php数组添加元素的方法
PHP数组添加一个元素的方式: push(), arr[], Php代码 $arr = array(); array_push($arr, el1, el2 ... eln); 但其实有一种更直 ...
- 【转】Tesla Model X的车门设计问题
Tesla Model X的车门设计问题 Tesla即将推出的SUV(Model X),不但继承了以上提到的Model S的各种问题(触摸屏,门把,……),而且还制造了新的问题.Model X具有一个 ...
- 使用grep恢复被删文件内容
在Unix/Linux下,最危险的命令恐怕就属rm命令了,每次在root下使用这个命令的时候,我都要盯着命令行看上几分钟才敢把回车敲下去.以前,看到同事在脚本中使用rm命令 —— rm {$App_D ...
- nginx 读取文件 permission denied
nginx 是在root用户下安装的,静态网页的目录/var/www/html/ 目录下的内容所有者也是root 用户,按照 nginx配置文件中location说明 配置静态文件访问地址. 使用网址 ...
- 6个P2P流媒体开源项目介绍
P2P流媒体开源项目介绍 1. PeerCast 2002年成立,最早的开源P2P流媒体项目.PeerCast把节点按树结构组织起来, 每个频道都是一个树, 直播源是根节点,父节点只给子节点提供数据 ...
- Tcp超时修改
Linux 建立 TCP 连接的超时时间分析 tags: linux | network Linux 系统默认的建立 TCP 连接的超时时间为 127 秒,对于许多客户端来说,这个时间都太长了, 特别 ...