作者:桂。

时间:2018-04-24  22:04:52

链接:http://www.cnblogs.com/xingshansi/p/8934373.html


前言

本文为Jacobi并行拆解一文的补充,给出另一种矩阵运算的思路。

一、算法流程

  对于复数相关矩阵R,通过矩阵变换,在维度不变的情况下,转化为实数矩阵:

对于MUSIC算法,该思路可以降低Jacobi运算复杂度。额外的操作仅仅是少量的乘法操作,即耗费少量硬件资源换取更快速的处理时间。

直接复数转实数,需要将nxn的矩阵扩展为2n x 2n的矩阵,而直接转化的相关矩阵仍然为 n x n,降低了Jacobi的复杂度

  容易证明U*Un为新的特征向量,而U可与导向矢量a提前乘法处理,存储到Ram里。

  这里可以看出:(R + J*conj(R)*J)/2等价于中心对称线阵的前、后项空间平滑算法,而斜Hermitian矩阵的特征向量与转化的特征向量等价,因此可以得出特性:对于具备中心对称特性的线阵,复数->实数,既可以降低Jacobi复杂度,又具备了解相干信号的能力。

二、仿真验证

  未做实数化处理,code:

clc;clear all;close all
%Ref:Narrowband direction of arrival estimation for antenna arrays
doas=[-30 -5 40]*pi/180; %DOA's of signals in rad.
P=[1 1 1]; %Power of incoming signals
N=10; %Number of array elements
K=1024; %Number of data snapshots
d=0.5; %Distance between elements in wavelengths
noise_var=1; %Variance of noise
r=length(doas); %Total number of signals
% Steering vector matrix. Columns will contain the steering vectors
% of the r signals
A=exp(-i*2*pi*d*(0:N-1)'*sin([doas(:).']));
% Signal and noise generation
sig=round(rand(r,K))*2-1; % Generate random BPSK symbols for each of the
% r signals
noise=sqrt(noise_var/2)*(randn(N,K)+i*randn(N,K)); %Uncorrelated noise
X=A*diag(sqrt(P))*sig+noise; %Generate data matrix
R=X*X'/K; %Spatial covariance matrix
[Q ,D]= svd(R); %Compute eigendecomposition of covariance matrix
[D,I]=sort(diag(D),1,'descend'); %Find r largest eigenvalues
Q=Q(:,I);%Sort?the?eigenvectors?to?put?signal?eigenvectors?first
Qs=Q (:,1:r); %Get the signal eigenvectors
Qn=Q(:,r+1:N); %Get the noise eigenvectors
% MUSIC algorithm
%?Define?angles?at?which?MUSIC???spectrum????will?be?computed
angles=(-90:0.1:90);
%Compute steering vectors corresponding values in angles
a1=exp(-i*2*pi*d*(0:N-1)'*sin([angles(:).']*pi/180));
for k=1:length(angles)%Compute?MUSIC???spectrum??
music_spectrum(k)= 1/(a1(:,k)'*Qn*Qn'*a1(:,k));
end
figure(1)
plot(angles,abs(music_spectrum))
title('MUSIC Spectrum')
xlabel('Angle in degrees')

实数化处理,code:

clc;clear all;close all
%Ref:Narrowband direction of arrival estimation for antenna arrays
doas=[-30 -5 40]*pi/180; %DOA's of signals in rad.
P=[1 1 1]; %Power of incoming signals
N=10; %Number of array elements
K=1024; %Number of data snapshots
d=0.5; %Distance between elements in wavelengths
noise_var=1; %Variance of noise
r=length(doas); %Total number of signals
% Steering vector matrix. Columns will contain the steering vectors
% of the r signals
A=exp(-i*2*pi*d*(0:N-1)'*sin([doas(:).']));
% Signal and noise generation
sig=round(rand(r,K))*2-1; % Generate random BPSK symbols for each of the
% r signals
noise=sqrt(noise_var/2)*(randn(N,K)+i*randn(N,K)); %Uncorrelated noise
X=A*diag(sqrt(P))*sig+noise; %Generate data matrix
R=X*X'/K; %Spatial covariance matrix
%% Reconstruct
%实数
n = size(R);
I = eye(n/2);
J = fliplr(eye(n));
U = 1/sqrt(2)*[I fliplr(I);1j*fliplr(I) -1j*I];
R = 0.5*U*(R+J*conj(R)*J)*U';
% Reconstruct_end
[Q ,D]= svd(R); %Compute eigendecomposition of covariance matrix
[D,I]=sort(diag(D),1,'descend'); %Find r largest eigenvalues
Q=Q(:,I);%Sort?the?eigenvectors?to?put?signal?eigenvectors?first
Qs=Q (:,1:r); %Get the signal eigenvectors
Qn=Q(:,r+1:N); %Get the noise eigenvectors
% MUSIC algorithm
%?Define?angles?at?which?MUSIC???spectrum????will?be?computed
angles=(-90:0.1:90);
%Compute steering vectors corresponding values in angles
a1=exp(-i*2*pi*d*(0:N-1)'*sin([angles(:).']*pi/180));
for k=1:length(angles)%Compute?MUSIC???spectrum??
music_spectrum(k)= 1/(a1(:,k)'*U'*Qn*Qn'*U*a1(:,k));
end
figure(1)
plot(angles,abs(music_spectrum))
title('MUSIC Spectrum')
xlabel('Angle in degrees')

Jacobi并行拆解【补充】的更多相关文章

  1. Jacobi并行拆解

    作者:桂. 时间:2018-04-23  21:12:02 链接:http://www.cnblogs.com/xingshansi/p/8921815.html 前言 本文主要是复数矩阵分解的拆解思 ...

  2. 进程队列补充、socket实现服务器并发、线程完结

    目录 1.队列补充 2.关于python并发与并行的补充 3.TCP服务端实现并发 4.GIL全局解释器锁 什么是保证线程安全呢? GIL与Lock 5.验证多线程的作用 对结论的验证: 6.死锁现象 ...

  3. 深入理解Java虚拟机之JVM垃圾回收随笔

    1.对象已经死亡? 1.1引用计数法:给对象中添加一个引用计数器,每当有一个地方引用他时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不可能再被使用 的.但是它很难解决 ...

  4. 《OpenCL异构并行编程实战》补充笔记散点,第一至四章

    ▶ 总体印象:适合 OpenCL 入门的书,有丰富的代码和说明,例子较为简单.先把 OpenCL 代码的基本结构(平台 → 设备 → 上下文 → 命令队列 → 创建缓冲区 → 读写缓冲区 → 编译代码 ...

  5. Python基础补充(二) 多核CPU上python多线程并行的一个假象【转】

    在python上开启多个线程,由于GIL的存在,每个单独线程都会在竞争到GIL后才运行,这样就干预OS内部的进程(线程)调度,结果在多核CPU上: python的多线程实际是串行执行的,并不会同一时间 ...

  6. 《OpenCL异构并行编程实战》补充笔记散点,第五至十二章

    ▶ 第五章,OpenCL 的并发与执行模型 ● 内存对象与上下文相关而不是与设备相关.设备在不同设备之间的移动如下,如果 kernel 在第二个设备上运行,那么在第一个设备上产生的任何数据结果在第二个 ...

  7. OpenMP 《并行程序设计导论》的补充代码

    ▶ 使用 OpenMP 和队列数据结构,在各线程之间传递信息 ● 代码,使用 critical 子句和 atomic 指令来进行读写保护 // queue.h #ifndef _QUEUE_H_ #d ...

  8. Pthreads 《并行程序设计导论》的补充代码

    ▶ 关于单链表的访问,插入结点和删除结点操作,并且将其推广到多线程中去. ● 代码,通用的随机数生成 // my_rand.h #ifndef _MY_RAND_H_ #define _MY_RAND ...

  9. .Net并行编程(一)-TPL之数据并行

    前言 许多个人计算机和工作站都有多个CPU核心,可以同时执行多个线程.利用硬件的特性,使用并行化代码以在多个处理器之间分配工作. 应用场景 文件批量上传 并行上传单个文件.也可以把一个文件拆成几段分开 ...

随机推荐

  1. 安装和测试Kafka(转)

    http://blog.javachen.com/2015/03/17/install-and-test-kafka/# 本文主要介绍如何在单节点上安装 Kafka 并测试 broker.produc ...

  2. Android View的事件分发机制

    准备了一阵子,一直想写一篇事件分发的文章总结一下.这个知识点实在是太重要了. 一个应用的布局是丰富的,有TextView,ImageView,Button等.这些子View的外层还有ViewGroup ...

  3. ScrollView嵌套EditText联带滑动的解决的方法

    本篇文章的相关内容需结合上文:从ScrollView嵌套EditText的滑动事件冲突分析触摸事件的分发机制以及TextView的简要实现和冲突的解决的方法 在说完了怎样解决ScrollView嵌套E ...

  4. .NET/C#中对自定义对象集合进行自定义排序的方法

    一个集合可否排序,要看系统知不知道排序的规则,像内建的系统类型,int ,string,short,decimal这些,系统知道怎么排序,而如果一个集合里面放置的是自定义类型,比如自己定义了一个Car ...

  5. 使用正态分布变换(Normal Distributions Transform)进行点云配准

    正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面是PCL官网上的一个例 ...

  6. DUBBO本地搭建及小案例 (转)

    DUBBO的介绍部分我这里就不介绍了,大家可参考官方文档. DUBBO的注册中心安装 DUBBO的注册中心支持好几种,公司用到zookeeper注册中心,所以我这边只说明zookeeper注册中心如何 ...

  7. Linux 防火墙Iptables

    1.规则链INPUT——进来的数据包应用此规则链中的策略OUTPUT——外出的数据包应用此规则链中的策略FORWARD——转发数据包时应用此规则链中的策略PREROUTING——对数据包作路由选择前应 ...

  8. Mac 升级 PHP 7

    http://www.phpyc.com/article/15 mac 自带 php, 这个地球人都知道 在新系统中,/usr/bin 成为了系统保护目录,所以我们以前使用的替换 系统 php 的方法 ...

  9. 如何解决input file 选取相同文件后,change事件不起作用解决方法

    两种方法 1.在你的input所属的form表单reset()就可以了! $("#avatorForm")[0].reset(); 2.设置你的input file value值为 ...

  10. 航信电子发票开发(servlet请求方式)

    在系统用户交费后,需要打印发票,可以选择普票或者机打票(票据信息在系统中自定义设置的),也可以打印电子发票,这里对接的是航信的电子发票,请求方式非web服务,而是使用servlet通过HTTP请求的方 ...