>> s = rand(5,7)

s =

0.4186  0.8381  0.5028 0.1934 0.6979 0.4966 0.6602
0.8462  0.0196  0.7095 0.6822 0.3784 0.8998 0.3420
0.5252  0.6813  0.4289 0.3028 0.8600 0.8216 0.2897
0.2026  0.3795  0.3046 0.5417 0.8537 0.6449 0.3412
0.6721  0.8318  0.1897 0.1509 0.5936 0.8180 0.5341

>> [U,S,V] = svd(x)

U =

-0.4898    -0.3969    -0.4590   -0.6260
-0.5360    -0.3441    0.7673    0.0750
-0.5182    0.8415     0.0300    -0.1500
-0.4519    -0.1266    -0.4469   0.7616

S =

4.9686    0            0
0            0.4454    0
0            0            0.1566
0            0            0

V =

-0.8576       0.5123           -0.0451
-0.0320       0.0344           0.9989
0.5133        0.8581           -0.0131

-- 修改不重要的值

>> S(3,3)=0

S =

4.9686     0             0
0             0.4454     0
0             0             0
0             0             0

>> U*S*V'

ans =

1.9968   0.0718    -1.4009
2.2054   0.0800   -1.4984
2.4002   0.0953   -0.9999
1.8968   0.0699   -1.2009

结论:和原理的值差别不大

>> S(3,3)=0.1566

S =

4.9686    0                0
0            0.4454        0
0            0                0.1566
0            0                0

>> U*S*V'

ans =

2.0000    0.0000    -1.4000
2.2000    0.2000    -1.5000
2.4000    0.1000    -1.0000
1.9000    0.0000    -1.2000

奇异值分解(SVD)实例,将不重要的特征值改为0,原X基本保持不变的更多相关文章

  1. 特征值分解与奇异值分解(SVD)

    1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...

  2. 数学基础系列(六)----特征值分解和奇异值分解(SVD)

    一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...

  3. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  4. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  5. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  6. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  7. 【转载】奇异值分解(SVD)计算过程示例

    原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

随机推荐

  1. 很详细、很移动的Linux makefile 教程

    近期在学习Linux下的C编程,买了一本叫<Linux环境下的C编程指南>读到makefile就越看越迷糊,可能是我的理解能不行. 于是google到了以下这篇文章.通俗易懂.然后把它贴出 ...

  2. eclipse 修改 JDK中的src.zip的路径

    http://blog.sina.com.cn/s/blog_54a1bca7010112fb.html http://www.douban.com/note/211369821/ 1.点 “wind ...

  3. php匹配字符串中大写字母的位置

    变量名用的是驼峰,数据库中字段中的是下划线,现在想把userId等变量批量转换成user_id,怎么样获取大写字母在字符串中的位置?echo strtolower(preg_replace('/((? ...

  4. vim编辑器常规配置

    为了很舒服的编写程序,请把vim配置好 # apt install vim    安装vim编辑器 #sudo vim /etc/vim/vimrc   ///必须加上权限sudo 在这个文件中,会有 ...

  5. [原创]java WEB学习笔记36:Java Bean 概述,及在JSP 中的使用,原理

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  6. JSP嵌入ueditor、umeditor富文本编辑器

    一.下载: 1.什么是富文本编辑器?就是: 或者是这个: 其中第一个功能比较详尽,其主要用来编写文章,名字叫做udeitor. 第二个就相对精简,是第一个的MINI版,其主要用来编辑即时聊天或者发帖, ...

  7. Spring Cloud之搭建动态Zuul网关路由转发

    传统方式将路由规则配置在配置文件中,如果路由规则发生了改变,需要重启服务器.这时候我们结合上节课内容整合SpringCloud Config分布式配置中心,实现动态路由规则. 将yml的内容粘贴到码云 ...

  8. Ogre场景编辑器Ogitor源代码的构建

    本文转自:http://blog.csdn.net/zhengkangchen/article/details/6000769 Ogitor-0.4.2源代码构建,不少时间,这里记录一下: 下载源代码 ...

  9. Sqoop-1.4.4工具import和export使用详解

    转自:http://blog.csdn.net/wodatoucai/article/details/46343291 Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要 ...

  10. UOJ278 【UTR #2】题目排列顺序

    本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权!   题目链接: http://uoj.ac/co ...