bzoj 3754: Tree之最小方差树 模拟退火+随机三分
题目大意:
求最小方差生成树.N<=100,M<=2000,Ci<=100
题解:
首先我们知道这么一个东西:
- 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得
所以我们可以枚举这个平均数,然后计算所有边与该值的差的平方
然后扔下去跑一个最小生成树
然后我们通过枚举这个平均数发现这个平均数和答案的对应函数的图像是一个波形函数
所以我们可以直接在这个波形图像上找函数最低点:
相应的就有
- 爬山算法
- 模拟退火
两种算法
所以我们可以先在全局用模拟退火然后在局部用爬山算法。
然而还是每三组数据就Wa一次
然后发现这样的话极限数据只需要0.8s,还有1.2s可以用
所以可以在全局再三分找函数最低点.
随机化左右端点然后再三分.
随机化22次端点极限数据可以跑到1.3s
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 128;
const int maxm = 2048;
const double eps = 1e-10;
const double det = 0.99;
struct Node{
int u,v,bed;
double d;
bool friend operator < (const Node &a,const Node &b){
return a.d < b.d;
}
}G[maxm];
int fa[maxn];
inline int find(int x){return x == fa[x] ? x : fa[x] = find(fa[x]);}
int n,m;
inline double work(double mid){
for(int i=1;i<=n;++i) fa[i] = i;
for(int i=1;i<=m;++i) G[i].d = (G[i].bed - mid)*(G[i].bed - mid);
sort(G+1,G+m+1);
int cnt = 0;double sum = 0;
for(int i=1;i<=m;++i){
int x = find(G[i].u);
int y = find(G[i].v);
if(x != y){
sum += G[i].d;
fa[x] = y;
if(++cnt == n-1) break;
}
}
return sqrt(sum/(n-1));
}
inline double ran(){
return (1.0*rand())/1000.0;
}
double ans = 1e10,ans_p;
inline double f(double mid){
double x = work(mid);
if(ans > x){
ans = x;
ans_p = mid;
}return x;
}
int main(){
srand(2333);
read(n);read(m);
int minn = 0x7f7f7f7f,maxx = -0x7f7f7f7f;
for(int i=1;i<=m;++i){
read(G[i].u);
read(G[i].v);
read(G[i].bed);
minn = min(minn,G[i].bed);
maxx = max(maxx,G[i].bed);
}
double l = minn,r = maxx,nx,t,val_nx;
double T = 50.0,nw = (l+r)/2,val_nw;
while(T > eps){
nx = ( rand() % 2 == 0 ? -1 : 1)*ran()*T;
t = val_nw - (val_nx = f(nx));
if(t > 0 || exp(t/T) >= ran() ){
nw = nx;
val_nw = val_nx;
}
T *= det;
}
while(r-l > eps){
double midx = (l+l+r)/3;
double midy = (l+r+r)/3;
double x = f(midx);
double y = f(midy);
if(x < y) r = midy;
else l = midx;
}
ans = min(ans,f(l));
int num = 22;
while(num--){
double l = minn + rand()*ran()*0.1;
double r = maxx - rand()*ran()*0.1;
if(l > r) swap(l,r);
while(r-l > eps){
double midx = (l+l+r)/3;
double midy = (l+r+r)/3;
double x = f(midx);
double y = f(midy);
if(x < y) r = midy;
else l = midx;
}ans = min(ans,f(l));
}
printf("%.4lf\n",ans);
getchar();getchar();
return 0;
}
bzoj 3754: Tree之最小方差树 模拟退火+随机三分的更多相关文章
- BZOJ 3754 Tree之最小方差树 MST
Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...
- BZOJ 3754 Tree之最小方差树
枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...
- [BZOJ3754]Tree之最小方差树
3754: Tree之最小方差树 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 402 Solved: 152[Submit][Status][Di ...
- [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树
[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000 ...
- 【bzoj3754】Tree之最小方差树 最小生成树
题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...
- 【BZOJ 3754】Tree之最小方差树
http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...
- 【BZOJ 3754】: Tree之最小方差树
题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...
- 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树
发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...
- bzoj3754 Tree之最小方差树 最小生成树+推性质
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...
随机推荐
- python利用正则表达式提取字符串
前言 正则表达式的基础知识就不说了,有兴趣的可以点击这里,提取一般分两种情况,一种是提取在文本中提取单个位置的字符串,另一种是提取连续多个位置的字符串.日志分析会遇到这种情况,下面我会分别讲一下对应的 ...
- MATLAB循环结构:for语句+定积分实例
for语句 格式: for 循环变量=表达式1:表达式2:表达式3 循环体语句 end 表达式1:循环变量初值:表达式2:步长:表达式3:循环变量终值. for 循环变量=矩阵表达式 循环体语句 en ...
- iPhone快速获取UUID
1.一张图解决不懂iPhone手机的小白获取UDID的方式
- 打广告:B站广告
https://www.bilibili.com/video/av52230444/ https://www.bilibili.com/video/av52230444/ https://www.bi ...
- Android系统移植与调试之------->如何修改Android自带的apk出现一圈圈类似鸡蛋的花纹
最近被一个问题烦恼到了,就是android4.1系统自带的Email.文件管理器.信息等apk都出现同一个问题,就是现实在平板上的时候会出现一圈圈类似鸡蛋的花纹. 我想了两种方法来解决,第一种方法没有 ...
- 15.Django添加一个功能模块的步骤(和SpringMVC类比)
这里介绍如何在Django里新建一个模块,这个例子还是最简单的例子 通过浏览器访问 http://localhost:8000/hello/然后返回一个欢迎页 我是做java web出身的,这里用py ...
- 更换好的yum源
最近重装了虚拟机,因为之前总是碰到一些 yum的软件太 旧了,索性重装了 虚拟机,从零开始,然后配置yum源,以便以后安装 插件包的时候是最新的.如下: 1,进入yum源配置目录cd /etc/yum ...
- Java找出一组数字的最大值
形如:int [] nums = {7,2,8,9,1,12}; 解一:两两比较并记录下标,下次比较拿上次比较的最大值和上次比较的下一个进行比较,循环一次找出最大值 /** * @author 马向峰 ...
- 使用idea2017搭建SSM框架(转发:https://www.cnblogs.com/hackyo/p/6646051.html#!comments)
步骤: 一.首先使用idea新建一个Maven webapp项目 点击Finish,第一次搭建可能会很慢,甚至可能需要VPN才能搭建成功 二.搭建目录结构 我这里列出的是搭建完了之后所有的目录和文件, ...
- 教你在 Yii2 中添加全局函数
方法一 这种方法就是直接在入口文件web/index.php里面写函数,示例代码如下: // something code …… // 全局函数 function pr($var) { $templa ...