题目描述

为了庆祝新的一年到来,小M决定要粉刷一个大木板。大木板实际上是一个W*H的方阵。小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形全部刷好。小M乐坏了,于是开始胡乱地使用这个工具。
假设小M每次选的两个格子都是完全随机的(方阵中每个格子被选中的概率是相等的),而且小M使用了K次工具,求木板上被小M粉刷过的格子个数的期望值是多少。

输入

第一行是整数K,W,H

输出

一行,为答案,四舍五入保留到整数。

样例输入

1 3 3

样例输出

4


题解

期望

由于期望具有可加性,因此可以计算出每个格子被染色的概率,加起来即为答案。

那么一个格子被染色的概率即为$1-(每次都不被染色的概率)^k$。

考虑单次染色没有没染的情况:选定的两个点都在左边、上边、右边、下边,但是会发现四个角的部分会计算两次,因此还需要减掉两个点都在左上、左下、右上、右下的情况。然后求幂加起来即可。

#include <cmath>
#include <cstdio>
inline double squ(double x)
{
return x * x;
}
int main()
{
int k , n , m , i , j;
double ans = 0;
scanf("%d%d%d" , &k , &n , &m);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
ans += 1 - pow((squ((i - 1) * m) + squ((j - 1) * n) + squ((n - i) * m) + squ((m - j) * n)
- squ((i - 1) * (j - 1)) - squ((i - 1) * (m - j)) - squ((n - i) * (j - 1)) - squ((n - i) * (m - j))) / squ(n * m) , k);
printf("%.0lf\n" , ans);
return 0;
}

【bzoj2969】矩形粉刷 期望的更多相关文章

  1. bzoj2969 矩形粉刷 概率期望

    此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...

  2. bzoj2969 矩形粉刷

    学习一波用markdown写题解的姿势QAQ 题意 给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子. 分析 一开始看错 ...

  3. bzoj2969矩形粉刷

    题解: 和前面那个序列的几乎一样 容斥之后变成求不覆盖的 然后再像差分的矩形那样 由于是随便取的所以这里不用处理前缀和直接求也可以 代码: #include <bits/stdc++.h> ...

  4. 【BZOJ2969】矩形粉刷 概率+容斥

    [BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...

  5. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  6. BZOJ 2969: 矩形粉刷(期望)

    BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...

  7. bzoj 2969: 矩形粉刷 概率期望+快速幂

    还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 2018 Multi-University Training Contest 6 Solution

    A - oval-and-rectangle 题意:给出一个椭圆的a 和 b,在$[0, b]中随机选择c$ 使得四个顶点在椭圆上构成一个矩形,求矩形周长期望 思路:求出每种矩形的周长,除以b(积分) ...

随机推荐

  1. android design 新控件

    转载请标明出处: http://blog.csdn.net/forezp/article/details/51873137 本文出自方志朋的博客 最近在研究android 开发的新控件,包括drawe ...

  2. Tomcat启动排查

    Tomcat启动排查 一.参考 https://blog.csdn.net/baidu_32739019/article/details/64155136

  3. Core Location :⽤用于地理定位

    Core Location :⽤用于地理定位 在移动互联⽹网时代,移动app能解决⽤用户的很多⽣生活琐事,⽐比如 导航:去任意陌⽣生的地⽅方 周边:找餐馆.找酒店.找银⾏行.找电影院 在上述应⽤用中, ...

  4. cordova-plugin-themeablebrowser 0.2.17 "ThemeableBrowser"ionic跳转外链插件在ios中heardBar会遮住内容的bug

    ionic+angular的app项目中需要在App打开一个外部的url链接,用了这个插件发现在iPhone手机中会出现toolbar挡住url页面内容 解决方法: 在原有基础上加上statusBar ...

  5. js三目运算符执行多个条件

    三元运算符的结果语句可以执行多个操作,每个操作用逗号分隔就可以,例子如下: var a=1: a>5?(alert(1),alert(2)):(alert(3),alert(4))

  6. JZOJ 5922. sequence

    5922. [NOIP2018模拟10.23]sequence (File IO): input:sequence.in output:sequence.out Time Limits: 1000 m ...

  7. SpringCloud框架搭建+实际例子+讲解+系列五

    (4)服务消费者,面向前端或者用户的服务 本模块涉及到很多知识点:比如Swagger的应用,SpringCloud断路器的使用,服务API的检查.token的校验,feign消费者的使用.大致代码框架 ...

  8. POJ:2236-Wireless Network

    Wireless Network Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 34265 Accepted: 14222 D ...

  9. 笔记-docker-2安装(centos6.5环境)

    笔记-docker-2安装(centos6.5环境) 1.      centos6.5安装docker 1.1.    升级内核 安装docker,官方文档要求linux kernel至少3.8以上 ...

  10. Android 导出traces.txt 遇到的坑

    我一直以为traces.txt 导出需要root .因为每当我 cd data ll 然后就会告诉我 Permission denied 后来我问同事,怎么导出traces.txt 文件.同事说很简单 ...