这题咕了好久.....


设$f[i][j]$表示从$(i,j)$到最后一行的期望步数;

则有

$ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$

$ f[i][m]=\frac{1}{3}(f[i][m]+f[i][m-1]+f[i+1][m])+1$

$ f[i][j]=\frac{1}{4}(f[i][j]+f[i][j-1]+f[i][j+1]+f[i+1][j])+1$

所以他有后效性(于是我们疯狂迭代)

然而要高斯消元。。。。

具体的来说,就是把每行的每个转移都写在系数矩阵里,对这一行进行高斯消元;增广矩阵要写已知量;

化简上面的式子:

$\frac{2}{3}*f[i][1]-\frac{1}{3}*f[i][2]=\frac{1}{3}*f[i+1][1]+1 $

$\frac{2}{3}*f[i][m]-\frac{1}{3}*f[i][m-1]=\frac{1}{3}*f[i+1][m]+1$

$\frac{3}{4}*f[i][j]-\frac{1}{4}*f[i][j-1]-\frac{1}{4}*f[i][j+1]=\frac{1}{4}*f[i+1][j]+1$

注意,高斯消元消的是某一行,每个位置的值。

又注意到上面的有分数不美观,实际写的时候可以化简(方程两边同乘1个数)。

还有,高斯消元的过程需要简化

深蓝代表系数矩阵中有数的位置,浅灰蓝色为增广矩阵。

先消成这个样子:

然后从最后一行向上代入

#include<cstdio>
#include<iostream>
#define R register int
#define db double
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,m,x,y;
db f[],a[][];
inline void init() {
a[][]=,a[][]=-,a[][m+]=+f[];
a[m][m]=,a[m][m-]=-,a[m][m+]=+f[m];
for(R i=;i<m;++i) a[i][i]=,a[i][i-]=a[i][i+]=-,a[i][m+]=f[i]+;
}
inline void Gauss() {
for(R i=;i<=m;++i) { if(i<m) a[i][i+]/=a[i][i];
a[i][m+]/=a[i][i],a[i][i]=;
a[i+][i+]-=a[i][i+]*a[i+][i];
a[i+][m+]-=a[i][m+]*a[i+][i],a[i+][i]=;
} for(R i=m-;i;--i) a[i][m+]-=a[i][i+]*a[i+][m+];
for(R i=;i<=m;++i) f[i]=a[i][m+];
}
signed main() {
n=g(),m=g(),x=g(),y=g();
if(m==) printf("%.10lf\n",(db)*(n-x));
else { for(R i=n-;i>=x;--i) {
init(); Gauss();
} printf("%.10lf\n",f[y]);
}

2019.05.24

CF24D Broken robot 后效性DP的更多相关文章

  1. 『Broken Robot 后效性dp 高斯消元』

    Broken Robot Description 你作为礼物收到一个非常聪明的机器人走在矩形板上.不幸的是,你明白它已经破碎并且行为相当奇怪(随机).该板由N行和M列单元组成.机器人最初位于第i行和第 ...

  2. 【题解】CF24D Broken Robots(收敛性)

    [题解]CF24D Broken Robots http://codeforces.com/problemset/problem/24/D 解1(不会写,口胡的) 获得一个比较显然的转移式子 \(dp ...

  3. CF24D Broken robot

    题目链接 题意 有一个\(n \times m\)的矩阵.机器人从点\((x,y)\)开始等概率的往下,往右,往左走或者不动.如果再第一列,那么不会往左走,再第m列不会往右走.也就是说机器人不会走出这 ...

  4. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  5. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  6. Cogs 376. [IOI2002]任务安排(后效性DP)

    [IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...

  7. $CF24D\ Broken Robot\ DP+$高斯消元

    Luogu Description 你收到的礼物是一个非常聪明的机器人,行走在一块长方形的木板上.不幸的是,你知道它是坏的,表现得相当奇怪(随机).该板由n行和m列的单元格组成.机器人最初是在i行和j ...

  8. cf24D. Broken robot(高斯消元)

    题意 题目链接 Sol 今天上午的A题.想出来怎么做了但是没时间写了qwq 思路很简单,首先把转移方程列一下,发现每一个位置只会从下一行/左右转移过来,而且第N行都是0,那么往下转移的都可以回带. 剩 ...

  9. 【CF24D】Broken Robot (DP+高斯消元)

    题目链接 题意:给定一个\(n\times m\)的矩阵,每次可以向→↓←移动一格,也可以原地不动,求从\((x,y)\)到最后一行的期望步数. 此题标签\(DP\) 看到上面这个肯定会想到 方法一: ...

随机推荐

  1. UML图之例图

    用例图主要说明的是谁要使用系统,以及他们使用该系统可以做些什么,帮助开发团队以一种可视化的方式理解系统的功能需求. 一个用例图包含了多个模型元素,如系统.参与者和用例,并且显示这些元素之间的各种关系, ...

  2. bzoj 2300: [HAOI2011]防线修建 凸包

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2300 题解 这道题让我们维护一个支持动态删除点的上凸壳 并且告诉了我们三个一定不会被删除 ...

  3. Azure blob Storage Snapshot

    用户虚拟机硬盘的备份是客户在部署云应用中是一个非常重要的部分. 目前有多种平台的备份方法: 捕获镜像:可以采用Capture的方式(powershell命令为Save-AzureVMImage)捕获虚 ...

  4. 关于系统中:/dev/mem

    1)参考:https://blog.csdn.net/lsn946803746/article/details/52948036   博主:lsn946803746 2)参考:https://blog ...

  5. 七 内置锁 wait notify notifyall; 显示锁 ReentrantLock

    Object中对内置锁进行操作的一些方法: Java内置锁通过synchronized关键字使用,使用其修饰方法或者代码块,就能保证方法或者代码块以同步方式执行. 内置锁使用起来非常方便,不需要显式的 ...

  6. rails中一个窗体多个模型——fields_for

    详细参考 http://railscasts.com/episodes/73-complex-forms-part-1中part-1.2.3部分 借助field_for可以生成表单来处理两个或更多模型 ...

  7. [dp]LCS最长公共子序列

    https://www.51nod.com/tutorial/course.html#!courseId=4 复杂度:${\rm O}(nm)$ 转移方程: #include<bits/stdc ...

  8. 孙鑫VC学习系列教程

    教程简介 1.循序渐进 从Win32SDK编程开始讲解,帮助大家理解掌握Windows编程的核心 -- 消息循环机制. 2.通俗易懂 编程语言枯燥难懂,然而通过孙鑫老师形象化的讲解,Windows和M ...

  9. hibernate框架内容整理 学习

    1.1 ORM概述 Object Relation Mapping 对象关系映射. 对象-关系映射(OBJECT/RELATIONALMAPPING,简称ORM),是随着面向对象的软件开发方法发展而产 ...

  10. Flask 入门(第一篇)

    1. 认识 Flask Flask 是一个微型 Web 框架,依赖于 jinjia2 模板系统和 Werkzeug WSGI(本质为 Socket 服务端) 服务,默认情况不支持数据库抽象层.表单验证 ...