传送门

练习一下Tarjan的模板。

求一下割点,然后加个约束条件判一下特殊点,剩下的就是所求点。

//UOJ 67
//by Cydiater
//2016.10.27
#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cstdio>
#include <bitset>
#include <cstdlib>
using namespace std;
#define ll long long
#define up(i,j,n)		for(int i=j;i<=n;i++)
#define down(i,j,n)		for(int i=j;i>=n;i--)
#define cmin(a,b) a=min(a,b)
#define cmax(a,b) a=max(a,b)
const int MAXN=2e5+5;
const int oo=0x3f3f3f3f;
inline int read(){
	char ch=getchar();int x=0,f=1;
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int N,M,LINK[MAXN],len=0,dfn[MAXN],low[MAXN],dfs_clock=0,siz[MAXN],ans=0,outdu[MAXN];
bool vis[MAXN],OK[MAXN];
struct edge{
	int y,next;
}e[MAXN];
namespace solution{
	inline void insert(int x,int y){e[++len].next=LINK[x];LINK[x]=len;e[len].y=y;}
	void init(){
		N=read();M=read();
		up(i,1,M){
			int x=read(),y=read();
			insert(x,y);
			insert(y,x);
			siz[x]++;siz[y]++;
		}
	}
	void tarjan(int node,int father){
		vis[node]=1;dfn[node]=low[node]=++dfs_clock;
		for(int i=LINK[node];i;i=e[i].next)if(e[i].y!=father){
			if(!dfn[e[i].y]){
				outdu[node]++;
				tarjan(e[i].y,node);
				cmin(low[node],low[e[i].y]);
				if(low[e[i].y]>=dfn[node])OK[node]=1;
			}else if(vis[e[i].y]) cmin(low[node],dfn[e[i].y]);
		}
		if(M-siz[node]!=N-2)OK[node]=1;
		if(outdu[node]==1&&node==1&&M-siz[node]==N-2)OK[node]=0;
		if(OK[node])ans++;
	}
	void slove(){
		up(i,1,N)if(!dfn[i])tarjan(i,0);
	}
	void output(){
		cout<<N-ans<<endl;
		up(i,1,N)if(!OK[i])printf("%d ",i);
	}
}
int main(){
	//freopen("input.in","r",stdin);
	using namespace solution;
	init();
	slove();
	output();
	return 0;
}

UOJ#67. 新年的毒瘤的更多相关文章

  1. uoj#67. 新年的毒瘤(割顶)

    #67. 新年的毒瘤 辞旧迎新之际,喜羊羊正在打理羊村的绿化带,然后他发现了一棵长着毒瘤的树. 这个长着毒瘤的树可以用n个结点m 条无向边的无向图表示.这个图中有一些结点被称作是毒瘤结点,即删掉这个结 ...

  2. uoj 67 新年的毒瘤 tarjan求割点

    #67. 新年的毒瘤 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/67 Description 辞旧迎新之际 ...

  3. uoj 67 新年的毒瘤 割点

    题目链接: 题目 #67. 新年的毒瘤 问题描述 辞旧迎新之际,喜羊羊正在打理羊村的绿化带,然后他发现了一棵长着毒瘤的树. 这个长着毒瘤的树可以用 nn 个结点 mm 条无向边的无向图表示.这个图中有 ...

  4. uoj#67 新年的毒瘤【Tarjan】

    题目:http://uoj.ac/problem/67 题意:n个节点m条边的图,删除某个节点及他相连的所有边之后,剩下的图就成了一棵树.找出所有这样的节点. 思路:上次去清华面试的B题,当时就是在瞎 ...

  5. UOJ 67 新年的毒瘤 - Tarjan

    Description 给出一个无向图, 要求找出某个点$u$, 去掉$u$和$u$所连的边, 所剩下的节点构成一棵树. Solution 首先, 割点肯定是不可能满足条件的, 因为去掉割点后会构成若 ...

  6. 【UOJ】67 新年的毒瘤 &【BZOJ】1123 BLO

    [UOJ 67] 题目链接: 传送门 题解: 第一眼很懵逼……这什么鬼. 思考什么点复合条件……(o(>﹏<)o 1.树,也就是说还剩n-2条边,等价于要删去一个度数为m-n+2的点. 2 ...

  7. 【UOJ#67】新年的毒瘤 Tarjan 割点

    #67. 新年的毒瘤 UOJ直接黏贴会炸...    还是戳这里吧: http://uoj.ac/problem/67#tab-statement Solution 看到这题的标签就进来看了一眼. 想 ...

  8. 【UOJ#67】新年的毒瘤(Tarjan)

    [UOJ#67]新年的毒瘤(Tarjan) 题面 UOJ 题解 一棵\(n\)个节点的树显然有\(n-1\)条边,在本题中意味着删去一个点之后还剩下\(n-2\)条边.那么找到所有度数为\(m-(n- ...

  9. UOJ67 新年的毒瘤【Tarjan,割点】

    Online Judge:#uoj 67 Label:Tarjan,割点,细节 题目描述 辞旧迎新之际,喜羊羊正在打理羊村的绿化带,然后他发现了一棵长着毒瘤的树.这个长着毒瘤的树可以用\(n\)个结点 ...

随机推荐

  1. Linux 平台安装Oracle Database 12c

    1)下载Oracle Database 12cRelease 1安装介质 官方的下载地址: 1:http://www.oracle.com/technetwork/database/enterpris ...

  2. springMVC基础controller类

    此文章是基于 搭建SpringMVC+Spring+Hibernate平台 功能:设置请求.响应对象:session.cookie操作:ajax访问返回json数据: 创建springMVC基础con ...

  3. 强大的DOM变化观察者MutationObserver

    在这之前 DOM3 提供了 Mutation events 事件 DOMAttrModified DOMAttributeNameChanged DOMCharacterDataModified DO ...

  4. HTTP状态管理机制之Cookie

    一.cookie 起源 cookie 最早是网景公司的雇员 Lou Montulli 在1993年3月发明,后被 W3C 采纳,目前 cookie 已经成为标准,所有的主流浏览器如 IE.Chrome ...

  5. [bootstrap]bootstrap2如何引导div垂直居中

    参考网址:http://www.4byte.cn/question/138712/bootstrap-how-to-center-vertical.html 部分参考自上面网页中的方法.用过boots ...

  6. UI自动化,你值得拥有

    去年春节联欢晚会,为了那张“敬业福”,全家都卯足了劲儿“咻一咻”,连节目都顾不上看了.当时我就想,要是能自动化该多好,不停点击屏幕,屏幕不疼手还疼呢,何况还不好分心,生怕错过了“敬业福”.玩“咻一咻” ...

  7. CF733C Epidemic in Monstropolis[模拟 构造 贪心]

    C. Epidemic in Monstropolis time limit per test 1 second memory limit per test 256 megabytes input s ...

  8. iOS 2D绘图 (Quartz2D)之路径(stroke,fill,clip,subpath,blend)

    像往常一样 这个系列的博客是跟着大神的脚步来的.按照往例 在此贴出原博客的出处: http://blog.csdn.net/hello_hwc?viewmode=list我对大神的崇拜之情 如滔滔江水 ...

  9. PAT 1034. 有理数四则运算(20)

    本题要求编写程序,计算2个有理数的和.差.积.商. 输入格式: 输入在一行中按照"a1/b1 a2/b2"的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只 ...

  10. [转载]五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O

    转载自http://blog.sina.com.cn/s/blog_64e090b001016843.html 转载自http://blog.sina.com.cn/s/blog_64e090b001 ...