WinUI(WASDK)使用MediaPipe检查人体姿态关键点
前言
之前有用这个MediaPipe.NET .NET包装库搞了手势识别,丰富了稚晖君的ElectronBot机器人的第三方上位机软件的功能,MediaPipe作为谷歌开源的机器视觉库,功能很丰富了,于是就开始整活了,来体验了一把人体姿态关键点检测。

所用框架介绍
1. WASDK
这个框架是微软最新的应用开发框架,我是用来开发程序的主体,做一些交互和功能的承载,本质上和wpf,uwp这类程序没什么太大的区别,区别就是一些工具链的不同。
2. MediaPipe
MediaPipe offers open source cross-platform, customizable ML solutions for live and streaming media.
我主要使用MediaPipe进行人体姿态关键点坐标的提取,我的需求是将人体关键点坐标实时提取,并且同步到模型机器人的骨骼上,来实现同步的功能,但是这个博客只展示关键点的获取。

推荐文档
MediaPipe 集成人脸识别,人体姿态评估,人手检测模型
代码讲解(干货篇)
1. 项目介绍
项目结构如下图:

注意
由于MSIX打包的WASDK的路径访问为虚拟文件系统所以我们需要在项目里加入VFS目录,将引用的mediapipe的模块和dll放进去,不然会导致代码无法使用。
详情见如下文档:
打包的 VFS 位置
还有经过本人的测试,模型需要下载【Pose landmarker (Heavy)】的,不然检查不到坐标点。

特别注意的点,记得下载mediapipe的源码,将对应的模块依赖下载复制到对应的的目录,如果模型解压之后的名称和图片的不匹配记得修改文件名称之后复制到对应的目录,代码仓库就不上传模型文件了。

软件处理过程如下:
=>WinUI(WASDK)项目打开图片
=>OpencvSharp处理图片数据
=>转换成ImageFrame
=>MediaPipe处理返回人体姿态关键点坐标数据
=>软件通过win2d将坐标绘制到图片上
2.核心代码讲解
核心代码如下:
这段代码是将图片读取处理并且通过mediapipe获取坐标返回
private async void StartButton_Click(object sender, RoutedEventArgs e)
{
var matData = new OpenCvSharp.Mat(Package.Current.InstalledLocation.Path + $"\\Assets\\pose.jpg");
var mat2 = matData.CvtColor(OpenCvSharp.ColorConversionCodes.BGR2RGB);
var dataMeta = mat2.Data;
var length = mat2.Width * mat2.Height * mat2.Channels();
var data = new byte[length];
Marshal.Copy(dataMeta, data, 0, length);
var widthStep = (int)mat2.Step();
var imgframe = new ImageFrame(ImageFormat.Types.Format.Srgb, mat2.Width, mat2.Height, widthStep, data);
PoseOutput handsOutput = calculator.Compute(imgframe);
if (handsOutput.PoseLandmarks != null)
{
_poseOutput = handsOutput;
CanvasControl1.Invalidate();
var landmarks = handsOutput.PoseLandmarks.Landmark;
Console.WriteLine($"Got pose output with {landmarks.Count} landmarks");
}
else
{
Console.WriteLine("No pose landmarks");
}
}
将结果绘制到图片上的代码如下,采用win2d绘制
private void CanvasControl_Draw(CanvasControl sender, CanvasDrawEventArgs args)
{
if (_image != null)
{
// Draw the image
args.DrawingSession.DrawImage(_image);
}
if (_poseOutput != null)
{
var poseLineList = _poseOutput.GetPoseLines(_image.Size.Width, _image.Size.Height);
foreach (var postLine in poseLineList)
{
args.DrawingSession.DrawLine(postLine.StartVector2, postLine.EndVector2, Microsoft.UI.Colors.Green, 4);
}
foreach (var Landmark in _poseOutput?.PoseLandmarks?.Landmark)
{
var x = (int)_image.Size.Width * Landmark.X;
var y = (int)_image.Size.Height * Landmark.Y;
// Draw a point at (100, 100)
args.DrawingSession.DrawCircle(x, y, 2, Microsoft.UI.Colors.Red, 2);
}
}
}
效果如下:

人体点对应关系如图:

0 - nose
1 - left eye (inner)
2 - left eye
3 - left eye (outer)
4 - right eye (inner)
5 - right eye
6 - right eye (outer)
7 - left ear
8 - right ear
9 - mouth (left)
10 - mouth (right)
11 - left shoulder
12 - right shoulder
13 - left elbow
14 - right elbow
15 - left wrist
16 - right wrist
17 - left pinky
18 - right pinky
19 - left index
20 - right index
21 - left thumb
22 - right thumb
23 - left hip
24 - right hip
25 - left knee
26 - right knee
27 - left ankle
28 - right ankle
29 - left heel
30 - right heel
31 - left foot index
32 - right foot index
特别感谢的项目就是这个MediaPipe.NET了,没有它就没有我的这篇文章,更没有我的项目了。
个人感悟
又到了个人感悟环节,这次感觉舒服多了,因为看着wasdk框架的版本号越来越高,功能也越来越完善了。
总之是朝着好的方向发展了,希望别步了uwp的后尘,喜欢的话记得star一下了。
参考推荐文档如下
WinUI(WASDK)使用MediaPipe检查人体姿态关键点的更多相关文章
- WinUI(WASDK)使用MediaPipe检查手部关键点并通过ML.NET进行手势分类
前言 之所以会搞这个手势识别分类,其实是为了满足之前群友提的需求,就是针对稚晖君的ElectronBot机器人的上位机软件的功能丰富,因为本来擅长的技术栈都是.NET,也刚好试试全能的.NET是不是真 ...
- 人体姿态和形状估计的视频推理:CVPR2020论文解析
人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:http ...
- Facebook提出DensePose数据集和网络架构:可实现实时的人体姿态估计
https://baijiahao.baidu.com/s?id=1591987712899539583 选自arXiv 作者:Rza Alp Güler, Natalia Neverova, Ias ...
- 快速人体姿态估计:CVPR2019论文阅读
快速人体姿态估计:CVPR2019论文阅读 Fast Human Pose Estimation 论文链接: http://openaccess.thecvf.com/content_CVPR_201 ...
- 人体姿态的相似性评价基于OpenCV实现最近邻分类KNN K-Nearest Neighbors
最近学习了人体姿态的相似性评价.需要用到KNN来统计与当前姿态相似的k个姿态信息. 假设我们已经有了矩阵W和给定的测试样本姿态Xi,需要寻找与Xi相似的几个姿态,来估计当前Xi的姿态标签. //knn ...
- openpose模型在AI challenge人体骨骼关键点检测的表现
因为之前正好看了CMU在CVPR2017上的论文<Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields>, ...
- openpose-opencv 的body数据多人体姿态估计
介绍 opencv除了支持常用的物体检测模型和分类模型之外,还支持openpose模型,同样是线下训练和线上调用.这里不做特别多的介绍,先把源代码和数据放出来- 实验模型获取地址:https://gi ...
- openpose-opencv 的coco数据多人体姿态估计
介绍 opencv除了支持常用的物体检测模型和分类模型之外,还支持openpose模型,同样是线下训练和线上调用.这里不做特别多的介绍,先把源代码和数据放出来- 实验模型获取地址:https://gi ...
- 论文笔记 M. Saquib Sarfraz_Pose-Sensitive Embedding_re-ranking_2018_CVPR
1. 摘要 作者使用一个pose-sensitive-embddding,把姿态的粗糙.精细信息结合在一起应用到模型中. 用一个新的re-ranking方法,不需要重新计算新的ranking列表,是一 ...
- COCO数据集使用
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...
随机推荐
- 数组描述线性表(C++实现)
线性表也称有序表,其每一个实例都是元素的一个有序集合 抽象类linearList 一个抽象类包含没有实现代码的成员函数,这样的成员函数称为纯虚函数,用数字0作为初始值来说明 template<c ...
- 对doccano自动标注使用的默认UIE模型进行微调以提高特定领域的实体识别能力,提高标注速度
虽然doccano的自动标注使用默认的UIE模型可以识别出一定的实体,但是在特定领域或者因为实体类别名不能被理解很多实体是识别不了的,所以我们可以通过自己标注的数据对模型进行微调来满足我们Auto L ...
- 【Visual Leak Detector】源码文件概览
说明 使用 VLD 内存泄漏检测工具辅助开发时整理的学习笔记.本篇对 VLD 源码包中的各文件用途做个概述.同系列文章目录可见 <内存泄漏检测工具>目录 目录 说明 1. 整体概览 2. ...
- 笔记:C++学习之旅---初识C++
笔记:C++学习之旅---初识C++ 博主也是一个新手,学习编程才一年左右,刚大学毕业不久,以前在学校学习的语言主要是C,本人是从嵌入式学起的!我现在从事的公司主要是C++,所以我也 ...
- CSS3实现了左右固定中间自适应的几种方法
1,弹性盒(flex)布局 中间 .center 区域设置 flex-grow: 1 或者 width: 100% .container { width: 100%; min-height: 2 ...
- 搭建一个简易框架 3秒创建一个WebApi接口
前端ajax请求数据,传递的参数都是一个json字符串,经过多次解析发现其实都是一个DataSet {"selectA1":[{"Name":"156 ...
- 【Ubuntu】4.挂载/连接VM共享文件夹
第一步 首先需要在虚拟机设置中开启共享文件夹 第二步 修改fstab文件自动挂载 如果您想要自动挂载共享文件夹,可以编辑/etc/fstab文件并添加以下内容:(二选一即可,推荐) sudo gedi ...
- 2022-09-13:给你两个整数 m 和 n ,分别表示一块矩形木块的高和宽。 同时给你一个二维整数数组 prices ,其中 prices[i] = [hi, wi, pricei] 表示你可以
2022-09-13:给你两个整数 m 和 n ,分别表示一块矩形木块的高和宽. 同时给你一个二维整数数组 prices ,其中 prices[i] = [hi, wi, pricei] 表示你可以以 ...
- nginx: [emerg] https protocol requires SSL support in /usr/local/nginx/conf/nginx.conf:50
最近在nginx中配置一个443端口 一.安装nginx 首先得先安装个nginx 1.安装依赖包 # 一键安装上面四个依赖 [root@dex ~]# yum -y install gcc zlib ...
- Python基础 - 第一个python程序
Python程序是什么? Python源程序就是一个特殊格式的文本文件,可以使用任意文本编辑器软件做python的开发,python的文件扩展名为 .py 执行python程序的三种方式 直接调用解释 ...