ClickHouse(08)ClickHouse表引擎概况
目前ClickHouse的表引擎主要有下面四个系列,合并树家族、日志引擎系列、集成的表引擎和其他特殊的引擎。
合并树家族
Clickhouse中最强大的表引擎当属MergeTree(合并树)引擎及该系列(MergeTree)中的其他引擎。
MergeTree系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。
主要特点
- 存储的数据按主键排序。这使得您能够创建一个小型的稀疏索引来加快数据检索。
- 如果指定了分区键的话,可以使用分区。在相同数据集和相同结果集的情况下ClickHouse中某些带分区的操作会比普通操作更快。查询中指定了分区键时ClickHouse会自动截取分区数据。这也有效增加了查询性能。
- 支持数据副本。ReplicatedMergeTree系列的表提供了数据副本功能。
- 支持数据采样。需要的话,您可以给表设置一个采样方法。
日志引擎系列
这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的。
这系列的引擎有:
- StripeLog
- 日志
- TinyLog
共同属性
- 数据存储在磁盘上。
- 写入时将数据追加在文件末尾。
- 不支持突变操作。
- 不支持索引。这意味着
SELECT在范围查询时效率不高。 - 非原子地写入数据。如果某些事情破坏了写操作,例如服务器的异常关闭,你将会得到一张包含了损坏数据的表。
当然他们之间也会有差异。
主要差异点
- Log和StripeLog引擎支持:
- 并发访问数据的锁。
INSERT请求执行过程中表会被锁定,并且其他的读写数据的请求都会等待直到锁定被解除。如果没有写数据的请求,任意数量的读请求都可以并发执行。 - 并行读取数据。在读取数据时,ClickHouse使用多线程。每个线程处理不同的数据块。
Log引擎为表中的每一列使用不同的文件。StripeLog将所有的数据存储在一个文件中。因此StripeLog引擎在操作系统中使用更少的描述符,但是Log引擎提供更高的读性能。
TinyLog引擎是该系列中最简单的引擎并且提供了最少的功能和最低的性能。TinyLog引擎不支持并行读取和并发数据访问,并将每一列存储在不同的文件中。它比其余两种支持并行读取的引擎的读取速度更慢,并且使用了和Log引擎同样多的描述符。你可以在简单的低负载的情景下使用它。
集成的表引擎
ClickHouse 提供了多种方式来与外部系统集成,包括表引擎。像所有其他的表引擎一样,使用CREATE TABLE或ALTER TABLE查询语句来完成配置。然后从用户的角度来看,配置的集成看起来像查询一个正常的表,但对它的查询是代理给外部系统的。这种透明的查询是这种方法相对于其他集成方法的主要优势之一,比如外部字典或表函数,它们需要在每次使用时使用自定义查询方法。
以下是支持的集成方式:
- ODBC
- JDBC
- MySQL
- MongoDB
- HDFS
- S3
- Kafka
- EmbeddedRocksDB
- RabbitMQ
- PostgreSQL
- SQLite
- Hive
其他特殊的引擎
其他的表引擎用于特定的场景。具体使用什么引擎要根据具体的需求来分析。这里我们简单说一下有哪些表引擎,具体使用情况,我们后面再更新。
- 分布式引擎:分布式引擎本身不存储数据,但可以在多个服务器上进行分布式查询。读是自动并行的。读取时,远程服务器表的索引(如果有的话)会被使用。
- 关联表引擎:使用JOIN操作的一种可选的数据结构。Join表的数据总是保存在内存中。当往表中插入行记录时,CH会将数据块保存在硬盘目录中,这样服务器重启时数据可以恢复。如果服务器非正常重启,保存在硬盘上的数据块会丢失或被损坏。这种情况下,需要手动删除被损坏的数据文件。简单来说,这个是一种对join操作的优化的引擎。
- 内存表:Memory 引擎以未压缩的形式将数据存储在RAM中。数据完全以读取时获得的形式存储。换句话说,从这张表中读取是很轻松的。并发数据访问是同步的。锁范围小:读写操作不会相互阻塞。不支持索引。查询是并行化的。在简单查询上达到最大速率(超过10GB/秒),因为没有磁盘读取,不需要解压缩或反序列化数据。(值得注意的是,在许多情况下,与 MergeTree 引擎的性能几乎一样高)。重新启动服务器时,表中的数据消失,表将变为空。通常,使用此表引擎是不合理的。但是,它可用于测试,以及在相对较少的行(最多约100,000,000)上需要最高性能的查询。
- 随机数生成表引擎:随机数生成表引擎为指定的表模式生成随机数。
- 缓冲区:缓冲数据写入RAM中,周期性地将数据刷新到另一个表。在读取操作时,同时从缓冲区和另一个表读取数据。
- 字典:Dictionary引擎将字典数据展示为一个ClickHouse的表。
- 用于查询处理的外部数据:ClickHouse允许向服务器发送处理查询所需的数据以及SELECT查询。这些数据放在一个临时表中,可以在查询中使用(例如,在IN操作符中)。
- 文件(输入格式):数据源是以Clickhouse支持的一种输入格式(TabSeparated,Native等)存储数据的文件。
- MaterializedView:物化视图,视图的数据会物化到数据盘。
- 合并:Merge引擎(不要跟MergeTree引擎混淆)本身不存储数据,但可用于同时从任意多个其他的表中读取数据。读是自动并行的,不支持写入。读取时,那些被真正读取到数据的表的索引(如果有的话)会被使用。
- Null:当写入Null类型的表时,将忽略数据。从Null类型的表中读取时,返回空。
- 集合:始终存在于RAM中的数据集。它适用于IN运算符的右侧。
- URL:用于管理远程HTTP/HTTPS服务器上的数据。该引擎类似文件引擎。
- 视图:它不存储数据,仅存储指定的SELECT查询。从表中读取时,它会运行此查询(并从查询中删除所有不必要的列)。
资料分享
参考文章
- ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景
- ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计
- ClickHouse(03)ClickHouse怎么安装和部署
- ClickHouse(04)如何搭建ClickHouse集群
- ClickHouse(05)ClickHouse数据类型详解
- ClickHouse(06)ClickHouse建表语句DDL详细解析
ClickHouse(08)ClickHouse表引擎概况的更多相关文章
- ClickHouse入门:表引擎-HDFS
前言插件及服务器版本服务器:ubuntu 16.04Hadoop:2.6ClickHouse:20.9.3.45 文章目录 简介 引擎配置 HDFS表引擎的两种使用形式 引用 简介 ClickHous ...
- Clickhouse的MergeTree表引擎存储结构
MergeTree存储的文件结构 一张数据表被分成几个data part,每个data part对应文件系统中的一个目录.通过以下SQL可以查询data parts的信息. select table, ...
- ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析
目录 建表语法 数据处理策略 资料分享 参考文章 MergeTree拥有主键,但是它的主键却没有唯一键的约束.这意味着即便多行数据的主键相同,它们还是能够被正常写入.在某些使用场合,用户并不希望数据表 ...
- ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析
目录 建表语法 数据处理 汇总的通用规则 AggregateFunction 列中的汇总 嵌套结构数据的处理 资料分享 参考文章 SummingMergeTree引擎继承自MergeTree.区别在于 ...
- ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析
目录 建表 折叠 数据 算法 资料分享 参考文章 该引擎继承于MergeTree,并在数据块合并算法中添加了折叠行的逻辑.CollapsingMergeTree会异步的删除(折叠)这些除了特定列Sig ...
- Clickhouse表引擎之MergeTree
1.概述 在Clickhouse中有多种表引擎,不同的表引擎拥有不同的功能,它直接决定了数据如何读写.是否能够并发读写.是否支持索引.数据是否可备份等等.本篇博客笔者将为大家介绍Clickhouse中 ...
- UniqueMergeTree:支持实时更新删除的 ClickHouse 表引擎
UniqueMergeTree 开发的业务背景 首先,我们看一下哪些场景需要用到实时更新. 我们总结了三类场景: 第一类是业务需要对它的交易类数据进行实时分析,需要把数据流同步到 ClickHouse ...
- Clickhouse表引擎探究-ReplacingMergeTree
作者:耿宏宇 1 表引擎简述 1.1 官方描述 MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合 ...
- ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析
目录 建表语法 查询和插入数据 数据处理逻辑 ClickHouse相关资料分享 AggregatingMergeTree引擎继承自 MergeTree,并改变了数据片段的合并逻辑.ClickHouse ...
- ClickHouse(07)ClickHouse数据库引擎解析
目录 Atomic 建表语句 特性 Table UUID RENAME TABLES DROP/DETACH TABLES EXCHANGE TABLES ReplicatedMergeTree in ...
随机推荐
- CIO们开始将软件供应链升级为安全优先级top
开源之所以在软件开发中大量使用的原因是它提供了经过良好测试的构建块,可以加速复杂应用程序和服务的创建.但是第三方软件组件以及包和容器的便利性同时也带来了风险--软件供应链攻击. 软件供应链攻击日益普遍 ...
- ByConity 社区回顾|ByConity 和开发者们一起展望未来,携手共进!
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 新年伊始,我们想在这里感谢一群 ByConity 社区的小伙伴们. 正是因为有社区的开发者的支持,截止到 2023 ...
- 不知如何优选达人?火山引擎 VeDI 零售行业解决方案一键解决!
技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 "人-货匹配"这句营销老话,在直播电商兴起的这几年,似乎不再专指消费者与商品之间的关系. 过去 ...
- 火山引擎DataLeap的Catalog系统搜索实践 (二):整体架构
整体架构 火山引擎DataLeap的Catalog搜索系统使用了开源的搜索引擎Elasticsearch进行基础的文档检索(Recall阶段),因此各种资产元数据会被存放到Elasticsearch中 ...
- 用 Java?试试国产轻量的 Solon v1.10.7
Java 国产的轻量级应用开发框架.可用来快速开发 Java 应用项目.主框架仅 0.1 MB.Helloworld: @Controller public class App { public st ...
- Kubernetes(K8S) helm 安装
Helm 是一个 Kubernetes 的包管理工具, 就像 Linux 下的包管理器, 如 yum/apt 等, 可以很方便的将之前打包好的 yaml 文件部署到 kubernetes 上. Hel ...
- django读取数据库导出excel
路由 path(r'^export/xls/$', views.export_excel, name='export_excel'), 函数 import xlwt from django.http ...
- FOR ALL ENTRIES IN 与 INNER JOIN 内表
1.区别 FOR ALL ENTRIES IN 与 INNER JOIN 内表,目的都是通过内表找数据库表与之对应的数据,但是有区别. 1.1.写法 FOR ALL ENTRIES IN " ...
- POJ2965 The Pilots Brothers' refrigerator (精妙方法秒杀DFS BFS)
这道题和算法进阶指南的一道题解法一样,必须另操作为奇数.见证明过程 证明:要使一个为'+'的符号变为'-',必须其相应的行和列的操作数为奇数;可以证明,如果'+'位置对应的行和列上每一个位置都进行一次 ...
- kafka如何保证数据的消息不丢失(最简洁)
一.kafka 本身配置层面1.1.replication.factor 默认值1创建kafka的topic时候,每个分区设置的副本数, 根据broker数量酌情设置, 建议业界通常做法设置为3 1. ...