题目大意,给定在平面直角坐标系中的多个点,判断有多少个三元组 \((A, B, C)\) 满足共线性质。

题目链接:A566.三点共线

大题思路就是暴力所有的三元组,判断三个元素的斜率是否相同即可。其实还有其他方法可以做,我个人感觉用斜率法最简单。

有几点需要注意:

  1. 在计算斜率的时候,如果多个点处于一个与横坐标轴垂直的线上,那么除以 \(0\) 的时候会爆\(\color{royalblue}\text{RE}\) 需要特判一下。

  2. 存储的时候需要使用 double 类型。

  3. 在选取三元组的时候,需要保证不重复不遗漏。不会出现一个点被多次选中,相同的组合被多次计算的情况。

  4. 斜率法

    对于三个点 \((x_1, y_1)\), \((x_2, y_2)\), 和 \((x_3, y_3)\),计算任意两点之间的斜率。如果这三个斜率相等,则这三个点共线。但是要注意的是,当两个点的 x 坐标相等时,斜率会无穷大,因此在实际计算中需要特别处理这种情况。

    \[\frac{dy}{dx} = \frac{{y_2 - y_1}}{{x_2 - x_1}}
    \]
#include <iostream>
using namespace std; struct point{
int x;
int y;
} arr[105];
int n, cnt = 0; int main(){
cin >> n;
for (int i=1; i<=n; i++)
cin >> arr[i].x >> arr[i].y; for (int i=1; i<=n; i++){
for (int j=i+1; j<=n; j++){
for (int k=j+1; k<=n; k++){
int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x;
int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
if (x1 - x2 == 0 && x3 - x2 == 0){
cnt++;
continue;
}
if (x1 - x2 == 0 || x3 - x2 == 0)
continue;
double s1 = 1.0 * (y2 - y1) / (x2 - x1);
double s2 = 1.0 * (y3 - y2) / (x3 - x2);
if (s1 == s2) cnt++;
}
}
}
cout << cnt << endl;
return 0;
}
  1. 向量法

    设想将三个点看作向量,即 \(\vec{P_1P_2}\) 和 \(\vec{P_1P_3}\)。如果这两个向量是平行的,则三个点共线。你可以通过计算这两个向量的叉积来验证它们是否平行。如果叉积为零,则两个向量平行,即三个点共线。

    \[\text{Cross Product} = \vec{P_1P_2} \times \vec{P_1P_3} = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
    \]
#include <iostream>
using namespace std; struct point{
int x;
int y;
} arr[105];
int n, cnt; int main(){
cin >> n;
for (int i=1; i<=n; i++)
cin >> arr[i].x >> arr[i].y; for (int i=1; i<=n; i++){
for (int j=i+1; j<=n; j++){
for (int k=j+1; k<=n; k++){
int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x;
int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
if ((x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1) == 0)
cnt++;
}
}
}
cout << cnt << endl;
return 0;
}
  1. 行列式法

    将三个点的坐标表示成矩阵形式,然后计算这个矩阵的行列式。如果行列式的值为零,则表示这三个点共线。有关行列式的计算可以自行在搜索引擎上搜索。

    \[\text{Determinant} = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0
    \]
#include <iostream>
using namespace std; struct point{
int x;
int y;
} arr[105];
int n, cnt; int main(){
cin >> n;
for (int i=1; i<=n; i++)
cin >> arr[i].x >> arr[i].y; for (int i=1; i<=n; i++){
for (int j=i+1; j<=n; j++){
for (int k=j+1; k<=n; k++){
double x1 = arr[i].x; double x2 = arr[j].x; double x3 = arr[k].x;
double y1 = arr[i].y; double y2 = arr[j].y; double y3 = arr[k].y;
if (x1 * y2 + y1 * x3 + x2 * y3 - x1 * y3 - y2 * x3 - x2 * y1 == 0)
cnt++;
}
}
}
cout << cnt << endl;
return 0;
}
  1. 面积法

    如果三个点 \(A(x_1, y_1)\), \(B(x_2, y_2)\), 和 \(C(x_3, y_3)\) 共线,则它们构成的三角形的面积为零。

    \[S_{area} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|
    \]
#include <iostream>
using namespace std; struct point{
int x;
int y;
} arr[105];
int n, cnt; int main(){
cin >> n;
for (int i=1; i<=n; i++)
cin >> arr[i].x >> arr[i].y; for (int i=1; i<=n; i++){
for (int j=i+1; j<=n; j++){
for (int k=j+1; k<=n; k++){
int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x;
int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
if (0.5 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3*(y1-y2)) == 0)
cnt++;
}
}
}
cout << cnt << endl;
return 0;
}

以上所有代码的时间复杂度为 \(O(n^3)\),其中 \(n\) 是点的数量。但对于本题而言,没有问题不会超时。

【题解】A566.三点共线的更多相关文章

  1. hdu 4885 (n^2*log(n)推断三点共线建图)+最短路

    题意:车从起点出发,每次仅仅能行驶L长度,必需加油到满,每次仅仅能去加油站或目的地方向,路过加油站就必需进去加油,问最小要路过几次加油站. 開始时候直接建图,在范围内就有边1.跑最短了,再读题后发现, ...

  2. Friends and Berries URAL - 2067 (计算三点共线和计算的时候的注意点)

    题目链接:https://cn.vjudge.net/problem/URAL-2067 具体思路:判断三点共线就可以了,只有一对点能满足,如果一对就没有那就没有满足的. 在计算的时候,要注意,如果是 ...

  3. hdu 4885 (n^2*log(n)判断三点共线建图)+最短路

    题意:车从起点出发,每次只能行驶L长度,必需加油到满,每次只能去加油站或目的地方向,路过加油站就必需进去加油,问最小要路过几次加油站. 开始时候直接建图,在范围内就有边1.跑最短了,再读题后发现,若几 ...

  4. hdu 5020 求三点共线的组合数(容器记录斜率出现次数)

    题意:       给你n个点,问你3点共线的组合数有多少,就是有多少种组合是满足3点共线的. 思路:      一开始抱着试1试的态度,暴力了一个O(n^3),结果一如既往的超时了,然后又在刚刚超时 ...

  5. HDU - 4305 - Lightning 生成树计数 + 叉积判断三点共线

    HDU - 4305 题意: 比较裸的一道生成树计数问题,构造Krichhoof矩阵,求解行列式即可.但是这道题还有一个限制,就是给定的坐标中,两点连线中不能有其他的点,否则这两点就不能连接.枚举点, ...

  6. Leetcode题解(三)

    8.String to Integer (atoi) 题目 这道题目关键是要考虑清楚各种输入用例.针对每一种情况,函数都能处理,也就是函数鲁棒性很高.代码如下: class Solution { pu ...

  7. 2019CSUST集训队选拔赛题解(三)

    PY学长的放毒题 Description 下面开始PY的香港之行,PY有n个要去的小吃店,这n个小吃店被m条路径联通起来. PY有1个传送石和n−1个传送石碎片. PY可以用传送石标记一个小吃店作为根 ...

  8. JSOI Round 2题解

    强行一波题解骗一个访问量好了... http://blog.csdn.net/yanqval/article/details/51457302 http://absi2011.is-programme ...

  9. ZOJ1081:Points Within——题解

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1081 题目大意:给定一个点数为 n 的多边形,点按照顺序给出,再给出 m ...

  10. AtCoder Grand Contest 039 题解

    传送门 \(A\) 首先只有一串的情况下,遇到相同的肯定是改后面那一个最优,然后两串的话可能要分奇偶讨论一下 //quming #include<bits/stdc++.h> #defin ...

随机推荐

  1. Go 语言基础:包、函数、语句和注释解析

    一个 Go 文件包含以下几个部分: 包声明 导入包 函数 语句和表达式 看下面的代码,更好地理解它: 例子 package main import "fmt" func main( ...

  2. 14款DevOps/SRE工具,助力提升运维效率

    简介 随着平台工程的兴起,DevOps 和 SRE 不断发展,带来了新一代工具,旨在提高软件开发和运维的效率.可扩展性和可靠性. 在本篇文章中,我们将深入探讨一些最具发展前景的工具,它们正在塑造持续集 ...

  3. TensorFlow2数据类型

    1.1 数值类型 数值类型的张量是 TensorFlow 的主要数据载体,分为: 1.标量(Scalar) 单个的实数,如 1.2, 3.4 等,维度数(Dimension,也叫秩)为 0, shap ...

  4. 及刻周边惠:拥抱HarmonyOS原子化服务

    原文链接:https://mp.weixin.qq.com/s/Y75eiRlvDLXzoZWzAiZdeg,点击链接查看更多技术内容: 开发背景 及刻周边惠是梦享网络旗下本地生活服务平台,旨在为消费 ...

  5. HUAWEI AppGallery Connect全新升级,支持HarmonyOS生态全生命周期服务!

     原文:https://mp.weixin.qq.com/s/7aNIplUBdm_D1yyiMrQdAw,点击链接查看更多技术内容.     HUAWEI AppGallery Connect全新升 ...

  6. 最全能的AI换脸软件,FaceFusion下载介绍(可直播)

    FaceFusion是一款多功能的AI换脸软件,它不仅能图片.视频换脸,还可以直播换脸,换脸效果真实.自然 与大多数换脸软件不同的是,FaceFusion不仅支持N卡处理程序(Azure),还额外提供 ...

  7. 报表 BI 选型的那些事

    前言 报表工具是一个接近 20 年的产物了 但是,直到现在,在各种数据信息化的系统中,报表工具的作用,不仅没有褪色,反而是因为信息化需求的增大.数据的增多,以及报表工具本身迭代后越来越方便好用,使得它 ...

  8. k8s 深入篇———— docker 镜像是什么[二]

    前言 简单介绍一下docker的镜像. 正文 前面讲到了容器的工作原理了(namespace 限制了时间, cgroup限制了资源),知道docker 历史的也知道,docker 之所以能够称为容器大 ...

  9. asp .net core 单页应用

    前言 单页应用其实就是 asp.net core 来作为js service,个人觉得这样更好调试,这种比较适合中小型业务. 正文 因为自己写过混合app是ionic,那么就尝试一下angular的单 ...

  10. Taurus.MVC 性能压力测试(ap 压测 和 linux 下wrk 压测):.NET 版本

    前言: 上次发布了:Taurus.MVC 性能压力测试(ap 压测 和 linux 下wrk 压测):.NET Core 版本 今天计划准备压测一下 .NET 版本,来测试并记录一下 Taurus.M ...