HDFS+ClickHouse+Spark:从0到1实现一款轻量级大数据分析系统
在产品精细化运营时代,经常会遇到产品增长问题:比如指标涨跌原因分析、版本迭代效果分析、运营活动效果分析等。这一类分析问题高频且具有较高时效性要求,然而在人力资源紧张情况,传统的数据分析模式难以满足。本文尝试从0到1实现一款轻量级大数据分析系统——MVP,以解决上述痛点问题。
文章作者:数据熊,腾讯云大数据技术专家。
一、背景及问题
在产品矩阵业务中,通过仪表盘可以快速发现增长中遇到的问题。然而,如何快速洞悉问题背后的原因,是一个高频且复杂的数据分析诉求。
如果数据分析师通过人工计算分析,往往会占用0.5-1天时间才能找到原因。因此,人工计算分析方式,占用人力大,且数据分析效率低。
另外,产品版本迭代与业务运营活动,也需要对新版本、新功能、新活动进行快速数据分析,已验证效果。因此,在产品矩阵业务精细化运营中,存在大量的数据分析诉求,且需要快速完成。
在传统的数据分析模式下,对于每个需求,一般需要经历3-5天才能解决问题。除此之外,该模式还需要大量数据分析师对接需求。因此,在数据分析师人力紧缺情况下,该模式无法满足产品增长的数据分析诉求。
二、解决办法
在传统数据分析模式失效情况下,急需开拓新的数据分析模式,以快速满足产品增长的数据分析诉求。
为此,笔者和项目小团队从0到1实现一款轻量级大数据分析系统——MVP,希望通过MVP数据分析,驱动产品从"Minimum Viable Product" to "Most Valuable Product"。
除此之外,通过MVP数据分析系统,一方面希望提升数据分析效率;另一方面希望节省数据分析人力。
MVP数据分析系统分为四个模块,在产品业务-经营指标模块,基于AARRR模型对产品增长指标分析,分析产品增长北极星指标;在指标异常-根因预警模块,对增长指标异动进行监控,并提供根因线索;在分析工具-增长分析模块,对用户行为进行深入分析,洞悉用户行为;在AB-Test实验评估模块,对业务决策方案进行实验,评估业务决策的合理性。通过四个模块,实现数据分析驱动产品精细化运营。
三、技术实现
一款轻量级大数据分析系统,至少需要从数据建模、技术选型、页面交互三方面实现。数据建模如水流,贯穿整个数据分析系统;技术选型是基础设施,支撑整个系统高效运转;页面交互是面向用户,用数据说话,对业务增长进行数据赋能。
1. 数据建模
在开发MVP之前,由于历史原因,现有的产品矩阵中产品与产品之间,存在数据建设分散、数据开发重复、数据隔离等问题,一个用户会存在多条信息记录。
这种数据格局,不仅会导致计算、存储、人力资源的浪费,更严重的是会很大程度影响上层数据应用的效率。因此,旧的数据模式行不通,需要开拓新的数据模式。
MVP数据分析系统底层数据建设,一方面基于“用户(User)+事件ID(Event)+配置(Config)”思路,对产品数据信息进行高度抽象整合,收敛产品矩阵业务数据;另一方面,基于Key-Value模型,生成用户大宽表,一个User_Id仅有一条记录信息。
2. 技术选型
在日常产品数据可视化中,通常会想到使用MySQL进行页面交互式数据分析,但是MySQL数据库承载数据能力在百万级,适合对结果型数据进行分析,对于上亿级数据是无能为力。
在复杂的数据分析场景中,通常需要基于用户画像与用户行为,对用户进行OLAP多维自由交叉组合分析。因此,对于百万级以上的产品业务,使用MySQL是无法满足OLAP实时分析,需要尝试新的技术选型。
为了实现实时OLAP分析,对业界的大数据分析平台的技术方案我们进行了调研比较。业界存储引擎主要是HDFS与HBASE,计算引擎使用比较多的是Impala,Druid,ClickHouse,Spark。Druid系统维护成本高,无Join能力,且语法应用相对复杂。
从计算速度角度,ClickHouse比Presto快2倍+,比Impala快3倍+,比SparkSql快约4倍,计算性能比较如下。
实测数据,对2.2亿+条1.79GB记录数据,进行单表聚合0.095s,分析速度18.95GB/s。
和Impala相比,ClickHouse可以通过JDBC直接导入,数据导入成本低,ClickHouse系统维护成本相对低。另外,ClickHouse语法简单,易用性很强,对页面开发友好,可以快速开发出可视化页面。
基于上面这些因素,我们采用HDFS+ClickHouse+Spark技术方案。在这里,使用Spark补齐ClickHouse无法进行大规模Join操作短板,比如处理大规模复杂的关联分析任务。
另外,Spark可以无缝访问HDFS中Hive表数据,无需重新导数据,应用效率高。使用HDFS存储历史全量标签与行为数据(占比约80%),使用ClickHouse存储近期标签与行为数据(占比20%)。
3. 页面交互
MVP页面交互形式,80%数据分析诉求是可以直接通过页面实时分析完成,剩下约20%复杂分析任务,是通过提交任务式分析完成。
页面实时分析秒级返回分析结果,提交任务式分析需要5-15分钟返回结果。经营指标体系、事件模型分析、漏斗模型分析、留存模型分析等,是通过页面实时分析完成,用户人群画像洞察、用户兴趣偏好洞察是通过提交任务式分析完成。
4. 应用效果
按照传统数据分析模式,根据“提出需求->需求评审->写需求单->数据分析->输出结果”的规范流程,数据诉求需要经历3-5天才能解决问题,通过MVP系统可以快速完成数据分析诉求,大大缩短工期,对分析效率提升明显。目前MVP数据分析系统已经在内部使用,近期,使用MVP进行数据分析任务数达到1500+,高峰突破两千次。
从“人工数据分析 -> 工具化数据分析”的转变,对数据分析效率提升明显,更有利于数据驱动产品精细化运营。
5. 总结
本文尝试介绍从0到1实现一款轻量级大数据分析系统——MVP。目前MVP数据分析系统已经在内部使用,对于提升数据分析效率明显,为数据驱动产品业务增长赋能。同时,节省了数据分析师的人力投入。后期,基于产品矩阵业务,在完善现有模块情况下,还将对各个增长工具进行进一步打磨,提升MVP使用体验。
MVP乘风出海,结合先悉数据平台服务产业端
MVP作为内部系统,目前为部门在移动数据分析中节约了大量的时间成本,并沉淀了丰富的互联网分析模板与工具。在部门服务行业客户过程中,我们发现MVP所代表的移动数据分析解决方案,是目前传统产业数字化转型同样需要的必备工具。
为此,后续我们利用轻量级数据平台——先悉作为数据底座,解决了MVP对外部署的底层平台问题,开发了可单独私有化交付给行业客户使用的MVP toB版本,帮助行业客户通过实时用户行为分析、画像洞察为驱动,优化运营策略。
先悉数据平台是一款轻量级的大数据平台产品,有部署性价比高、运维便利、可私有化等特点,能够以“小而美”的方式满足中小规模项目的大数据应用落地。在具体项目实践中,先悉数据平台+MVP形成了一套优势互补的组合,目前已经开始为行业客户提供“开箱即用”的移动分析服务。
先悉功能简介:
先悉具备高性能、批流一体的大数据组件,无需自行部署各类繁杂的开源组件,快速实现私有化数据平台的部署;
先悉提供可视化任务流,作为数据开发平台,结合Spark SQL及我们提供的SPL,在图形化界面快速开发一款数据应用;
先悉自带强大可视化图表能力,可快速建立一个可视化站点,向同事、客户及领导展示您的数据指标。
先悉数据平台咨询/商务合作:Xdata_Suite@tencent.com
参考文章:
[1] https://zhuanlan.zhihu.com/p/54907288
[2] https://clickhouse.tech/docs/en/sql-reference/statements/create/
看腾讯技术,学云计算知识,关注云加社区
HDFS+ClickHouse+Spark:从0到1实现一款轻量级大数据分析系统的更多相关文章
- 从0到1搭建基于Kafka、Flume和Hive的海量数据分析系统(一)数据收集应用
大数据时代,一大技术特征是对海量数据采集.存储和分析的多组件解决方案.而其中对来自于传感器.APP的SDK和各类互联网应用的原生日志数据的采集存储则是基本中的基本.本系列文章将从0到1,概述一下搭建基 ...
- Spark 1.0.0 横空出世 Spark on Yarn 部署(Hadoop 2.4)
就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Progr ...
- spark 2.0.0集群安装与hive on spark配置
1. 环境准备: JDK1.8 hive 2.3.4 hadoop 2.7.3 hbase 1.3.3 scala 2.11.12 mysql5.7 2. 下载spark2.0.0 cd /home/ ...
- Hive数据分析——Spark是一种基于rdd(弹性数据集)的内存分布式并行处理框架,比于Hadoop将大量的中间结果写入HDFS,Spark避免了中间结果的持久化
转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上 ...
- hive on spark (spark2.0.0 hive2.3.3)
hive on spark真的很折腾人啊!!!!!!! 一.软件准备阶段 maven3.3.9 spark2.0.0 hive2.3.3 hadoop2.7.6 二.下载源码spark2.0.0,编译 ...
- Spark 2.0
Apache Spark 2.0: Faster, Easier, and Smarter http://blog.madhukaraphatak.com/categories/spark-two/ ...
- MemSQL 取代 HDFS 与 Spark 结合,性能大幅提升
MemSQL 取代 HDFS 与 Spark 结合,性能大幅提升 3,597 次阅读 - 基础架构 Apache Spark是目前非常强大的分布式计算框架.其简单易懂的计算框架使得我们很容易理解.虽然 ...
- APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...
- Apache Spark 3.0 将内置支持 GPU 调度
如今大数据和机器学习已经有了很大的结合,在机器学习里面,因为计算迭代的时间可能会很长,开发人员一般会选择使用 GPU.FPGA 或 TPU 来加速计算.在 Apache Hadoop 3.1 版本里面 ...
随机推荐
- loadrunner常见问题及解决办法
LoadRunner录制脚本时不弹出IE浏览器解决方法:启动浏览器,打开Internet选项对话框,切换到高级标签,去掉"启用第三方浏览器扩展(需要重启动)"的勾选,然后再次运行V ...
- UI 自动化遇到的坑
1,ElementNotInteractableException: Message: element not interactable 该解决方法是用xpath定位,然后使用js操作元素,点击之类 ...
- IDEA Gradle项目控制台输出乱码
idea 更新到2019.2.3没有这个选项. 可以点击 help->edit custom vm options 然后加上 -Dfile.encoding=utf-8 重启一下就好了
- 装cnpm
npm install -g cnpm --registry=https://registry.npm.taobao.org 然后配置环境变量
- vim改变字体和查看映射的(mapping)命令
临时修改.通过gvim Command MODE,输入如下命令即可: Linux/Unix: set guifont=Monospace\空格14 注意这里需要对空格使用\进行转义 Windows: ...
- 【JMeter_09】JMeter逻辑控制器__临界部分控制器<Critical Section Controller>
临界部分控制器<Critical Section Controller> 业务逻辑: 根据锁名来控制并发,同一个锁名之下,在同一时间点只能存在一个运行中,适用于控制并发的场景 锁名类型: ...
- 关于日期格式你必须知道的坑( yyyy-MM-dd HH:mm:ss)
java中的的日期格式为: yyyy-MM-dd HH:mm:ss:代表将时间转换为24小时制,例: 2018-06-27 15:24:21yyyy-MM-dd hh:mm:ss:代表将时间转换为12 ...
- python 类的内置函数2
必须明确创建对象的过程: 先创建空对象,执行初始化将属性存储到对象的名称空间中! 所以在__call__函数中必须完成这两步操作,同时将初始化完成的对象返回给调用者 一旦覆盖了__call__函数,就 ...
- Snmp扫描-snmpwalk、snmpcheck
SNMp经常被错误配置,是信息的金矿. SNMP服务是使用明文传输的,即使不能通过community进行查询,也有可能使用抓包嗅探的方法得到SNMP数据包中的数据. snmpwalk命令可以查询到很多 ...
- IDEA记坑之移动项目文件之后,import 找不到文件以及出现Cannot access的问题
今天本想挪动下文件,使项目更加可观,易整理,但是挪动后出现各种问题,import xxx;全部飘红.部分切面还出现Cannot access:试过了重启idea,rebuild....各种方法都行不通 ...