微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3
题目描述:
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。
进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?
方法1:
总体思路: 同时遍历 num1 和nums2 ,比较num1和nums2中当前遍历到的两个元素 nums1[i] 和 nums[j] 的大小。若nums1[i] 小则
i 前进一位,j 不动,反之,j 前进一位 ,i 不动,直到遍历到中位数的下标 或者 其中一个数组遍历结束 再继续单独遍历另一个数组,
直到找到中位数。由于 中位数需要根据 元素个数是奇数和偶数两种情况讨论,此种算法实现上细节判断较多,容易出错,最终写出的代码
结构也比较凌乱。且 时间复杂度 O(m + n),空间复杂度O(1) 性能上也不符合题目的要求。
重点关注第二种 O(log (m+n)) 的算法

1 #include <string>
2 #include <vector>
3 #include <cmath>
4
5 using namespace std;
6 class Solution {
7 public:
8 //O(m+n)
9 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
10 {
11 int m = nums1.size();
12 int n = nums2.size();
13 bool odd = true;//奇数
14 if( (m+n) % 2 == 0) odd = false;//偶数
15 int mid = (m+n)/2;
16 int k = 0;
17 int front = 0;
18 int i = 0,j = 0;
19 for(;i<m && j<n;)
20 {
21 if(k == mid)
22 {
23 if(odd)
24 {
25 return nums1[i]<nums2[j]?nums1[i]:nums2[j]/1.000000;
26 }
27 else
28 {
29 int tmp = nums1[i]<nums2[j]?nums1[i]:nums2[j];
30 return (tmp+front)/2.000000;
31 }
32 }
33 else
34 {
35 if(nums1[i]<nums2[j]){
36 front = nums1[i];
37 i++;
38 }
39 else
40 {
41 front = nums2[j];
42 j++;
43 }
44 k++;
45 }
46 }
47 // printf("k = %d mid = %d i = %d j = %d \n",k,mid,i,j);
48 if(k == 0)
49 {
50 if(j == n)
51 {
52 return odd?nums1[mid]/1.0:(nums1[mid]+nums1[mid-1])/2.0;
53 }
54 else if(i == m){
55 return odd?nums2[mid]/1.0:(nums2[mid]+nums2[mid-1])/2.0;
56 }
57 else{
58 return 0.000000;
59 }
60 }
61 if(odd)
62 {
63 int index ;
64 if(j == n ) //j 已经走完 i 未走完
65 {
66 index = i + (mid+1 - k)-1 ;
67 return index < m?nums1[index]/1.000000:0.000000;
68 // return nums1[index];
69 }
70 else
71 {
72 index = j + (mid+1 - k)-1;
73 return index < n?nums2[index]/1.000000:0.000000;
74 // return nums2[index];
75 }
76 }
77 else
78 {
79 if(j == n)
80 {
81 int idx = i + (mid+1 - k) -1;
82 if(idx <= 0 )
83 {
84 return (nums2[n-1] + nums1[0])/2.000000;
85 }
86 else
87 {
88 int frt = max(nums1[idx-1],nums2[n-1]);
89 return (nums1[idx] + frt)/2.000000;
90 }
91 }
92 else
93 {
94 int idx = j + (mid+1 - k) -1;
95 if(idx <= 0 )
96 {
97 return (nums1[m-1] + nums2[0])/2.000000;
98 }
99 else
100 {
101 int frt = max(nums2[idx-1],nums1[m-1]);
102 return (nums2[idx] + frt)/2.000000;
103 }
104 }
105 }
106 }
107 };
方法2:转化为求第 k 小数的元素
分析:上面的解法中 同时遍历两个数组中的元素并比较大小,对小的元素,在该数组中前进,并统计前进的步数,前进到 (n + m)/2 步,就遍历到
中位数。每次前进相当于去掉不可能是中位数的一个值,也就是一个个排除。由于数列是有序的,其实我们完全可以一半儿一半儿的排除。
具体思路可参考:https://leetcode.wang/leetCode-4-Median-of-Two-Sorted-Arrays.html
代码如下:
1 class Solution {
2 public:
3 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
4 {
5 int n = nums1.size();
6 int m = nums2.size();
7 int left = (n + m +1)/2;
8 int right = (n + m +2)/2;
9 //将n+m是奇数和偶数的情况合并,如果是奇数,会求两次两同的k,最终返回两个正序数组的一个中位数
10 //如果是偶数,最终返回两个正序数组的中间两个中位数的平均值
11 return (getKth(nums1,0,n-1,nums2,0,m-1,left)+getKth(nums1,0,n-1,nums2,0,m-1,right))*0.5;
12 }
13 /*
14 使用二分法
15 求 nums1[start1,end1]和 nums2[start2:end2]的第k小元素
16 */
17 double getKth(vector<int>& nums1, int start1,int end1,vector<int>& nums2,int start2,int end2,int k)
18 {
19 int len1 = end1 - start1 +1;
20 int len2 = end2 - start2 +1;
21 //始终将元素少的那个数组作为第一个参数,这样就能保证如果有数组空了,一定是第一个参数的数组
22 if(len1 > len2){
23 return getKth(nums2,start2,end2,nums1,start1,end1,k);
24 }
25 //递归出口1,nums1[start1,end1]空了,返回nums2[start2,end2]中的 第 k 个元素
26 if(len1 == 0)
27 {
28 return nums2[start2 + k - 1];
29 }
30 //递归出口2,返回两个数组的第 start 个元素中较小的一个
31 if(k == 1)
32 {
33 return min(nums1[start1+k-1],nums2[start2+k-1]);
34 }
35 //nums1[start1:end1] 中 第 k/2 个元素的下标,如果nums1[start1:end1] 长度小于 k/2,则取nums[start1:end1]最后一个元素下标
36 int i = start1 + min(k/2,len1) - 1;
37 //nums2[start2:end2] 中 第 k/2 个元素的下标,nums2[start2:end2] 长度一定不会小于 k/2
38 int j = start2 + k/2 - 1;
39 //int j = start2 + min(k/2,len2) - 1;
40 //递归地求 第 k、k/2、k/4、... 、1 个元素,直到遇到递归出口跳出
41 if(nums1[i] < nums2[j])
42 {
43 return getKth(nums1,i+1,end1,nums2,start2,end2,k - (i - start1 +1));
44 }
45 else
46 {
47 return getKth(nums1,start1,end1,nums2,j+1,end2,k - (j - start2 +1));
48 }
49 }
50 };
微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3的更多相关文章
- [LeetCode]4.寻找两个正序数组的中位数(Java)
原题地址: median-of-two-sorted-arrays 题目描述: 示例 1: 输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1, ...
- leetcode-4. 寻找两个正序数组的中位数
leetcode-4. 寻找两个正序数组的中位数. 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2. 请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(l ...
- leetcode 刷题(数组篇)4题 寻找两个正序数组的中位数(二分查找)
题目描述 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的 中位数 . 示例 1: 输入:nums1 = [1,3], nums2 = ...
- Leetcode随缘刷题之寻找两个正序数组的中位数
我一上来没读清题,想着这题这么简单,直接就上手写了: package leetcode.day_12_05; import java.util.ArrayList; import java.util. ...
- leetcode 4. Median of Two Sorted Arrays 寻找两个正序数组的中位数(困难)
一.题目大意 标签: 查找 https://leetcode.cn/problems/median-of-two-sorted-arrays 给定两个大小分别为 m 和 n 的正序(从小到大)数组 n ...
- 【LeetCode】4. Median of Two Sorted Arrays 寻找两个正序数组的中位数
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:数组,中位数,题解,leetcode, 力扣,python ...
- Leetcode4. 寻找两个正序数组的中位数
> 简洁易懂讲清原理,讲不清你来打我~ 输入两个递增数组,输出中位数数组 nums1 和 nums2.请你找出并返回这两个正序数组的 中位数 . 示例说明请见LeetCode官网. ...
- 寻找两个已序数组中的第k大元素
寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...
随机推荐
- VMware虚拟机中共享文件夹 开机启动
输入命令: sudo /usr/bin/vmhgfs-fuse .host:/ /mnt/hgfs -o allow_other -o uid=1000 -o gid=1000 -o umask=02 ...
- go 虎牙爬取
package main import ( "fmt" "github.com/antchfx/htmlquery" "io/ioutil" ...
- Tomcat6.0 支持 https
环境信息 Linux系统 + Tomcat (程序页面可以运行前提下) 条件:安装了JDK 查看指定版本信息 1 进入$JAVA_HOME/bin目录 (一般是这个目录 /usr/java ...
- vue知识点10
今天彻底掌握了如下: 1.解决回调地狱三种方案 callback async await Promise 2.中间件(middleware) express.static ...
- vscode自定义插件安装位置
vscode的插件默认安装位置在: C:\Users\用户名\.vscode\extensions 如果不想将插件安装在C盘,可以自定义一个目标位置存储,使用如下: 右键快捷方式,在原本的目标后加入- ...
- Spring Boot注解与资源文件配置
date: 2018-11-18 16:57:17 updated: 2018-11-18 16:57:17 1.不需要多余的配置文件信息 application.properties mybatis ...
- Docker指令整理
date: 2018-11-18 11:09:28 updated: 2018-11-18 11:09:28 Docker指令整理 管理员权限!!! 查看docker版本 docker -v 启动 s ...
- Spring boot ConditionalOnClass原理解析
Spring boot如何自动加载 对于Springboot的ConditionalOnClass注解一直非常好奇,原因是我们的jar包里面可能没有对应的class,而使用ConditionalOnC ...
- 企业级数据大屏设计如何实现,div+html+echarts
大屏是什么? 大屏设计是最近比较流行的概念,一般按照功能来分有几种: 1. 可交互的触摸屏,大多运用在互动教学课程或者报告演示现场,用户可结合交互操作来阐述具体内容.设计师需要对交互形式和传达内容作统 ...
- Innerclasses
内部类只能让它的外部类访问,其他同包的类也无法访问!方法里也能建内部类 1 public class Innerclasses { 2 public static void main(String[] ...