Caffe介绍与测试及相关Hi35xx平台下caffe yolox的使用参考
这一篇我大概讲讲Caffe框架下MNIST的实现与基于Hi35xx平台下caffe yolox的运用等,供大家参考
1、Caffe介绍与测试
caffe全称Caffe Convolutional Architecture For Feature Embedding,是一个兼具表达性、速度和思维模块化的深度学习框架。由伯克利人工智能研究小组和伯克利视觉和学习中心开发。虽然其内核是用C++编写的,但Caffe有Python和Matlab 相关接口。Caffe支持多种类型的深度学习架构,面向图像分类和图像分割,还支持CNN、RCNN、LSTM和全连接神经网络设计。Caffe支持基于GPU和CPU的加速计算内核库,如NVIDIA cuDNN和Intel MKL。
深度学习框架:Tensorflow 、Caffe 、Keras 、MXNet 、Torch7、Theano
Caffe能做什么:图片分类、场景预测、物体识别(faster-rcnn)、图像语义分割。
1.1、Caffe实现流程
以Caffe自带的MNIST例子走一遍流程,具体流程如下,从准备数据->定义Net->配置Solver->Run->分析结果->准备数据,循环反复,以此来实现最佳的caffemodel模型。
|
数据 |
准备数据 |
|
模型 |
定义Net |
|
算法 |
配置Solver |
|
Run |
|
|
分析结果 |
1.2、安装caffe
Caffe安装的官方网站,可以参考github上的两个链接:https://github.com/Microsoft/caffe / https://github.com/BVLC/caffe/tree/windows
之后下载Windows版本的git工具,链接:https://git-scm.com/downloads,具体安装步骤和环境配置,可以参考网上的帖子,比较简单。git下好后按照下面命令下载caffe
$ git clone https://gitbub.com/BVLC/caffe.git
$ cd caffe
$ git checkout windows
$ scripts\build_win.cmd
下载好之后还需要搭建一系列环境,如python的环境搭建等,如下所示:

need to either add the xxxx\caffe\python folder to your python path or copy the xxxxx caffe\python\caffe folder to your site_packages folder.
,虽然整体是比较复杂的,但是一些博主写了比较详细的安装教程,大家可以参考一下,给出参考链接:
https://blog.csdn.net/adong6561975/article/details/106495446/ -->这个十分详细
https://cloud.tencent.com/developer/article/1545949--->也供参考
然后需要下面几个核心安装包链接,如下所示:
CMake: https://cmake.org/download/ 3.19.1-win64-x64.msi
Python:https://www.python.org/downloads/ 3.5.2amd64
Anaconda3: https://repo.continuum.io/archive/ 3-4.2.0
之后需要编译整个工程,操作如下所示:

1.3、VS2015 mnist lmdb数据源制作
参考:https://www.cnblogs.com/peony-jing/p/8617532.html
执行create_mnist.psl脚本,运行之前需要修改两个地方

获取到了LMDB格式数据源:
E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\examples\mnist

1.4、在caffe框架下进行训练
1.4.1、train.prototxt文件的说明
首先需要定义好网络框架,通过GOOGLE标准.prototxt文件。位置在当前项目为:lenet_train_test.prototxt,定义了数据层、全连接层、激活层等等
技巧:可以通过caffe自带的一个draw_net.py函数画网络图层,进行检查,运行命令如下:当前目录:E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\examples\mnist
$ python ..\..\python\draw_net.py lenet_train_test.prototxt train_proto.png --rankdir=TB(BT、LR)
注意:对于windows上的操作,需要安装两个工具:
$ pip install pydot
$ pip install pydotplus
修改draw_net.py文件,修改之后才可以输出图片



1.4.2、solver.prototxt文件的说明
定义了训练过程的一些参数,如迭代次数、基础学习率等等
1.4.3、对模型进行训练train、time测试
训练指令
$ E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\scripts\build\tools\Release\caffe.exe train --solver= E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\examples\mnist\lenet_solver.prototxt
如果需要输出到log中保存下来,可以在后面加上: 2>&1 | tee xx.log(其中2表示错误也输出重定向到1中,&表示后台运行,即可以在命令行中看到支路的运行过程,tee是指把数据存放到xx.log中)
对于linux下:$ caffe train -solver lenet_solver.prototxt
训练结束:

训练结束后,训练出.caffemodel和.solverstate文件,其中.caffemodel用于测试,.solverstate用于恢复训练(像断点续传)

时间测试指令
$ E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\scripts\build\tools\Release\caffe.exe time --model=E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\examples\mnist\lenet_train_test.prototxt
如果需要输出到log中保存下来,可以在后面加上: 2>&1 | tee xx.log(其中2表示错误也输出重定向到1中,&表示后台运行,即可以在命令行中看到支路的运行过程,tee是指把数据存放到xx.log中)

1.4.4、通过caffe自带的.py函数等对进行训练之后的数据进行分析
目录:E:\Research\hilisicon_embedded\Face_detection\From_github\caffe\tools\extra
如parse_log.py、plot_training_log.py.example
对plot_training_log.py.example
支持下面chat types:
0: Test accuracy VS Iters
1: Test accuracy VS Seconds
2: Test loss VS Iters
3: Test loss vs Seconds
4: Train Learning rate vs Iters
5: Train Learning rate vs Seconds
6: Train loss vs Iters
7: Train loss vs Seconds
其中需要修改plot_training_log.py.example(对应python2版本的)文件,之后才能运行:
(1)、print语法不同,python2的print不用括号,Python3要括号
(2)、xrange()全部改为range()
(3)、将markers.keys()[idx] 改为 list(markers.keys())[idx]
之后又出现下面问题-----------但是没有解决

2、基于Hi35xx平台下的caffe使用
2.1、基于Caffe YOLO v1的caffemode及prototxt文件的生成
参考GitHub的案例:https://github.com/xingwangsfu/caffe-yolo
YOLO v1的官方链接:https://pjreddie.com/darknet/yolov1/
YOLO v1的.weights的链接:http://pjreddie.com/media/files/yolov1.weights


Marked_prototxt: ./../data/detection/yolov3/model/yolov3.prototxt mapper验证过的模型,海思会验证网络层是否满足转化要求,定义了几个可转化的网络层,自定义的层需要自己转,这部分后面会专门写一章来说明。
2.2、Yolo3在Hi3519A上的移植参考
Yolo3
①如何在海思 Hi3519AV100上移植YOLOV3 (2):https://blog.csdn.net/kwdx2/article/details/94560894
②如何在海思 Hi3519AV100上移植YOLOV3 (1):https://blog.csdn.net/kwdx2/article/details/92803710
基于海思芯片:从算法到移植 caffe-yolov3测试训练效果
:https://blog.csdn.net/Bonjour_ca_va/article/details/104092508
【Hi3519A】目标检测移植(一)——检验darknet2caffe的模型
:https://blog.csdn.net/u011622208/article/details/106092071
③YOLO v1之总结篇(linux+windows):https://blog.csdn.net/qq_14845119/article/details/53612362
④Yolo1问题1:YOLOv1 cannot works?cannot download right yolov1
.weights from Darknet project website. (目前已经下载在桌面)
⑤Yolo2资料: https://github.com/gklz1982/caffe-yolov2
Caffe介绍与测试及相关Hi35xx平台下caffe yolox的使用参考的更多相关文章
- Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例)
Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例) 在完成winodws平台上的caffe环境的搭建之后,亟待掌握的就是如何在caffe中进行训练与学习,下面将进行简单的介 ...
- 【转】Jmeter测试报表相关参数说明
Jmeter测试报表相关参数说明 采用Jmeter测试工具对web系统作的负载测试,得出的响应报表,数据比较难懂,现作一具体说明. 以下是在一次具体负载测试中得出的具体数值,测试线程设置情况为:线程数 ...
- 使用TestFlight测试时候相关内容
前言:记录一下使用TestFlight测试时候相关内容 场景:在我们添加测试员:给测试员发送了邀请:测试员使用TestFlight的时候,其实是有崩溃的次数的记录的,相应的崩溃的信息也是可以查询到的. ...
- Linux平台下:块设备、裸设备、ASMlib、Udev相关关系
对磁盘设备(裸分区)的访问方式分为两种:1.字符方式访问(裸设备):2.块方式访问 Solaris平台 : 在Solaris平台下,系统同时提供对磁盘设备的字符.块方式访问.每个磁盘有两个设备文件名: ...
- BEA WebLogic平台下J2EE调优攻略--转载
BEA WebLogic平台下J2EE调优攻略 2008-06-25 作者:周海根 出处:网络 前 言 随着近来J2EE软件广泛地应用于各行各业,系统调优也越来越引起软件开发者和应用服务器提供 ...
- Android平台下OpenCV移植与使用---基于C/C++
在<Android Studio增加NDK代码编译支持--Mac环境>和<Mac平台下Opencv开发环境搭建>两篇文章中,介绍了如何使用NDK环境和Opencv环境搭建与测试 ...
- .NET平台下,关于数据持久层框架
在.NET平台下,关于数据持久层框架非常多,本文主要对如下几种做简要的介绍并推荐一些学习的资源: 1.NHibernate 2.NBear 3.Castle ActiveRecord 4.iBATIS ...
- [转]caffe+Ubuntu14.0.4 64bit 环境配置说明(无CUDA,caffe在CPU下运行) --for --Amd
caffe是一个简洁高效的深度学习框架,具体介绍可以看这里,caffe环境配置过程可以参考这里,我在搭建环境时搜集了许多资料,这里整理了一下,介绍一下caffe在无CUDA的环境下如何配置. 1. 安 ...
- windows平台下VLC2.0.5编译
windows平台下VLC2.0.5编译说明 时隔一年多,又要搞流媒体了,不过这次是要做流媒体服务器. 暂时决定使用vlc+ffmpeg+live555,虽然听有些前辈说这个组合的性能较差,只能作为学 ...
随机推荐
- R - 0 or 1(最短路)
Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j<=n),which ...
- 洛谷 P2895 [USACO08FEB]Meteor Shower S (BFS)
题意:你刚开始位于坐标轴的\((0,0)\)点,一共有\(m\)颗流星砸向地面,每颗流星在\(t\)时砸到\((x,y)\)点,其四周上下左右也均有波及,你每秒可以向上下左右移动一个单位,问你是否可以 ...
- Codeforces Round #658 (Div. 2) C2. Prefix Flip (Hard Version) (构造)
题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(2n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...
- 11.PowerShell DSC之安装PowerShell Module
打开https://powershellgallery.com,检索你需要的目标模块,我们以安装名为"xmysql"的module为例: 自动安装 1.执行命令install-mo ...
- 4.Direct交换机之使用指定routingkey完成日志记录场景
标题 : 4.Direct交换机之使用指定routingkey完成日志记录场景 目录 : RabbitMQ 序号 : 4 const string logOthersQueueName = " ...
- Please commit your changes or stash them before you merge问题解决
问题描述 error: Your local changes to the following files would be overwritten by merge: xxx/xxx/xxx.c P ...
- 深入剖析JavaScript中的对象与原始值之间的转换机制
我们都知道原始值之间是可以互相转换的,但是如果对象转原始值呢? 所有的对象在布尔上下文(context)中均为 true .所以对于对象,不存在 to-boolean 转换, 只有字符串和数值转换. ...
- markdown table collapse span
markdown table collapse span refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问! 原创文章,版权所有️x ...
- Apple Screen Recorder All In One
Apple Screen Recorder All In One Apple macOS 自带录屏 QuickTime Player https://support.apple.com/zh-cn/g ...
- npm publish & 403 Forbidden
npm publish & 403 Forbidden 403 Forbidden - PUT https://registry.npmjs.org/ https://www.npmjs.co ...