import numpy as np
import matplotlib .pyplot as plt
from sklearn.neighbors import KNeighborsClassifier

读取样本数据,图片

样本数据的提取

  • 特征:每一张图片对应的numpy数组
  • 目标:0,1,2,3,4,5,6,7,8,9
feature = []
target = []
for i in range(10):#i:0-9表示的是文件夹的名称
for j in range(1,501):#j:1-500表示的是图片的名称的一部分
imgPath = './data/'+str(i)+'/'+str(i)+'_'+str(j)+'.bmp'
img_arr = plt.imread(imgPath)
feature.append(img_arr)
target.append(i)
feature = np.array(feature) #feature是一个三维的数组
target = np.array(target)
feature.shape
#(5000, 28, 28)

feature目前是三维的numpy数组。必须变形成二维的才可以作为特征数据

feature = feature.reshape(5000,784)

进行样本数据的打乱,并保证数据对应

np.random.seed(10)
np.random.shuffle(feature)
np.random.seed(10)
np.random.shuffle(target)
对样本数据进行拆分
测试数据
训练数据
knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(x_train,y_train)
knn.score(x_test,y_test)
#对模型进行测试
print('真实的结果:',y_test)
print('模型分类的结果:',knn.predict(x_test))

保存训练好的模型

from sklearn.externals import joblib
#保存
joblib.dump(knn,'./knn.m')
#读取
knn = joblib.load('./knn.m')
knn
将外部图片带入模型进行分类的测试
img_arr = plt.imread('./数字.jpg')
plt.imshow(img_arr)

图片剪切

eight_arr = img_arr[175:240,85:135]
plt.imshow(eight_arr)
eight_arr.shape
#(65, 50, 3)
#模型只可以测试类似于测试数据中的特征数据
#将8对应的图片进行降维(65, 50, 3)降低成(784,)
eight_arr = eight_arr.mean(axis=2)
eight_arr.shape
#(65, 50)
#进行图片像素的等比例压缩
import scipy.ndimage as ndimage
eight_arr = ndimage.zoom(eight_arr,zoom=(28/65,28/50))
eight_arr = eight_arr.reshape(1,784)
eight_arr.shape
#(1, 784)
knn.predict(eight_arr)

代码以及样本数据查看连接:https://github.com/dylan3714/-

KNN手写数字识别的更多相关文章

  1. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  2. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  3. 10,knn手写数字识别

    # 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClas ...

  4. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  5. KNN实现手写数字识别

    KNN实现手写数字识别 博客上显示这个没有Jupyter的好看,想看Jupyter Notebook的请戳KNN实现手写数字识别.ipynb 1 - 导入模块 import numpy as np i ...

  6. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  7. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  8. K近邻实战手写数字识别

    1.导包 import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighb ...

  9. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

随机推荐

  1. 使用Gateway配置路由以及动态路由

    1. 新建module cloud-gateway-gateway9527 2. pom.xml <!--注意不需要web模块依赖,否则报错--> <?xml version=&qu ...

  2. zookeeper代替eureka与springcloud整合

    注册中心 zookeeper: zookeeper是一个分布式协调工具,可以实现注册中心功能 关闭Linux服务器防火墙后启动zookeeper服务器 zookeeper服务器取代Eureka服务器, ...

  3. Django学习路30_view中存在重复名时,取第一个满足条件的

    在 settings 中添加 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.con ...

  4. ref以及传值传址的理解

    ref(也包括out)关键字肯定都会用,传值调用和传址调用也是初学写代码时都已经历过的话题,与这相关的还有一些话题,比如值类型和引用类型有什么区别等,但是如果不仔细,可能有一些概念的混淆或者理解不够清 ...

  5. PHP print_r() 函数

    print_r() 函数用于打印变量,以更容易理解的形式展示. PHP 版本要求: PHP 4, PHP 5, PHP 7高佣联盟 www.cgewang.com 语法 bool print_r ( ...

  6. luogu 6046 纯粹容器 期望dp

    LINK:纯粹容器 一道比较不错的期望题目. 关键找到计算答案的方法. 容易发现对于每个点单独计算答案会好处理一点. 暴力枚举在第k轮结束统计情况 然后最后除以总方案数即可. 考虑在第k轮的时候结束 ...

  7. Struts/Servlet,action转到jsp后,CSS失效,路径问题(struts2,jsp路径,action路径,action跳转,相对路径,绝对路径)

    问题:使用struts2,如何处理action的路径?还有,在action转到的jsp中,如何写js,css,图 片的路径?(例如访问http://localhost/project/listUser ...

  8. explain关键字使用解释

    原文: 58沈剑 架构师之路  https://mp.weixin.qq.com/s/oWNrLHwqM-0ObuYbuGj98A <数据库允许空值,往往是悲剧的开始>一文通过explai ...

  9. 用 Python 制作一个艺术签名小工具,给自己设计一个优雅的签名

    生活中有很多场景都需要我们签字(签名),如果是一些不重要的场景,我们的签名好坏基本无所谓了,但如果是一些比较重要的场景,如果我们的签名比较差的话,就有可能给别人留下不太好的印象了,俗话说字如其人嘛,本 ...

  10. 大学生可用来接单,利用Python实现教务系统扩容抢课!

    最近一学期一次的抢课大戏又来了,几家欢乐几家愁.O(∩_∩)O哈哈~(l我每次一选就过了hah,我还是有欧的时候滴).看着他们盯着教务系统就着急,何况我们那教务系统,不想说什么.emmm 想周围的朋友 ...