题意

给定 \(n\),求有多少个长度为 \(2n\) 的排列 \(p\) 满足

  • 对于 \(1\leq i\leq n\),\(p_{2i-1}<p_{2i}\)。

  • \(p_1<p_3<\cdots<p_{2n-1},p_2<p_4<\cdots<p_{2n}\)。

答案对给定的模数 \(m\) 取模,不保证 \(m\) 为质数

\(\texttt{Data Range:}1\leq n\leq 10^6,1\leq m\leq 10^9\)。

题解

注意到我们可以奇偶分组,最后合并一下。

接下来考虑将因为一个小于号是 \(2\) 个元素,另一个是 \(n\) 个元素,所以考虑将排列与合法的入栈出栈过程建立映射。

如果某一个元素入栈了,那么往奇数部分填上这个元素的入栈时间,出栈的话则往偶数部分填。

由于入栈时间和出栈时间有序,而且弹掉 \(n\) 个元素的时间总比将 \(n\) 个元素入栈的时间晚,所以可以满足所有的限制。

注意到不同过程的总数就是卡塔兰数,所以答案就出来了。

但是由于这题需要组合数模合数,所以要对每个数做唯一分解,但是这样是 \(O(n\sqrt{n})\) 的。

注意到 \(1\sim n\) 中每个质因子对答案的贡献为 \(1\),\(n+1\) 为 \(0\),而 \(n+2\sim 2n\) 为 \(-1\),所以我们需要求出 \(1\sim 2n\) 的所有质因子,这个过程可以仿照埃氏筛来做。

首先可以枚举一个质数 \(p\),然后枚举他的倍数 \(q\)。接下来不断用 \(q\) 除掉 \(p\),然后顺便对答案产生贡献。容易看出每个数的每个质因子只被考虑到一次,所以复杂度是 \(O(n\log n)\) 的,可以通过。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e6+51;
ll n,MOD,res=1,ptot,tmp,sgn;
ll np[MAXN<<1],fct[MAXN<<1];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
int main()
{
n=read(),MOD=read();
for(register int i=2;i<=2*n;i++)
{
if(!np[i])
{
for(register int j=1;i*j<=2*n;j++)
{
np[i*j]=1,tmp=i*j,sgn=i*j<=n?-1:i*j==n+1?0:1;
while(tmp%i==0)
{
fct[i]+=sgn,tmp/=i;
}
}
}
}
for(register int i=2;i<=2*n;i++)
{
while(fct[i])
{
res=(li)res*i%MOD,fct[i]--;
}
}
printf("%d\n",res);
}

Luogu P3200 [HNOI2009]有趣的数列的更多相关文章

  1. 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)

    P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...

  2. P3200 [HNOI2009]有趣的数列--洛谷luogu

    ---恢复内容开始--- 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3& ...

  3. P3200 [HNOI2009]有趣的数列

    题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<...<a2n ...

  4. 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)

    洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...

  5. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  6. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  7. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  8. BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数

    BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...

  9. 【BZOJ1485】[HNOI2009]有趣的数列(组合数学)

    [BZOJ1485][HNOI2009]有趣的数列(组合数学) 题面 BZOJ 洛谷 题解 从小往大填数,要么填在最小的奇数位置,要么填在最小的偶数位置. 偶数位置填的数的个数不能超过奇数位置填的数的 ...

随机推荐

  1. 微服务实战系列(五)-注册中心Eureka与nacos区别

    1. 场景描述 nacos最近用的比较多,介绍下nacos及部署吧,刚看了下以前写过类似的,不过没写如何部署及与eureka区别,只展示了效果,补补吧. 2.解决方案 2.1 nacos与eureka ...

  2. QT博客:QT学习之路

    http://www.qter.org/thread-629-1-1.html

  3. ACMer不得不会的线段树,究竟是种怎样的数据结构?

    大家好,欢迎阅读周三算法数据结构专题,今天我们来聊聊一个新的数据结构,叫做线段树. 线段树这个数据结构很多人可能会有点蒙,觉得没有听说过,但是它非常非常有名,尤其是在竞赛圈,可以说是竞赛圈的必备技能. ...

  4. 整理requests和正则表达式爬取猫眼Top100中遇到的问题及解决方案

    最近看崔庆才老师的爬虫课程,第一个实战课程是requests和正则表达式爬取猫眼电影Top100榜单.虽然理解崔老师每一步代码的实现过程,但自己敲代码的时候还是遇到了不少问题: 问题1:获取respo ...

  5. 【代码审计】PHP代码审计---基础记录

    PHP伪协议 PHP伪协议事实上是其支持的协议与封装协议,支持的种类有以下12种. * file:// - 访问本地文件系统 * http:// - 访问 HTTP(s) 网址 * ftp:// - ...

  6. c++ 动态库的加载

    转载:https://blog.csdn.net/ztq_12345/article/details/99677769 使用ide是vs, 使用Windows.h下的3个函数对动态库进行加载第一个:H ...

  7. matlab中reshape 重构数组

    来源:https://ww2.mathworks.cn/help/matlab/ref/reshape.html?searchHighlight=reshape&s_tid=doc_srcht ...

  8. QTree1 【题解】

    题目背景 数据规模和spoj上有所不同 题目描述 给定一棵n个节点的树,有两个操作: CHANGE i ti 把第i条边的边权变成ti QUERY a b 输出从a到b的路径中最大的边权,当a=b的时 ...

  9. 一、Mysql(1)

    数据库简介 人类在进化的过程中,创造了数字.文字.符号等来进行数据的记录,但是承受着认知能力和创造能力的提升,数据量越来越大,对于数据的记录和准确查找,成为了一个重大难题 计算机诞生后,数据开始在计算 ...

  10. golang拾遗:指针和接口

    这是本系列的第一篇文章,golang拾遗主要是用来记录一些遗忘了的.平时从没注意过的golang相关知识.想做本系列的契机其实是因为疫情闲着在家无聊,网上冲浪的时候发现了zhuihu上的go语言爱好者 ...