公号:码农充电站pro

主页:https://codeshellme.github.io

在互联网早期,随着网络上的网页逐渐增多,如何从海量网页中检索出我们想要的页面,变得非常的重要。

当时著名的雅虎和其它互联网公司都试图解决这个问题,但都没能有一个很好的解决方案。

直到1998 年前后,两位斯坦福大学的博士生,拉里·佩奇和谢尔盖·布林一起发明了著名的 PageRank 算法,才完美的解决了网页排名的问题。也正是因为这个算法,诞生了伟大的 Google 公司。



(上图中:左为布林右为佩奇。)

1,PageRank 算法原理

PageRank 算法的核心原理是:在互联网中,如果一个网页被很多其它网页所链接,说明该网页非常的重要,那么它的排名就高

拉里·佩奇将整个互联网看成一张大的图,每个网站就像一个节点,而每个网页的链接就像一个弧。那么,互联网就可以用一个图或者矩阵来描述。

拉里·佩奇也因该算法在30 岁时当选为美国工程院院士。

假设目前有4 个网页,分别是 A,B,C,D,它们的链接关系如下:



我们规定有两种链:

  • 出链:从自身引出去的链。
  • 入链:从外部引入自身的链。

比如图中的C 网页,有两个入链,一个出链。

PageRank 的思想就是,一个网页的影响力就等于它的所有入链的影响力之和

用数学公式表示为:

其中(分值代表页面影响力):

  • PR(u) 是网页u 的分值。
  • Bu 是网页u 的入链集合。
  • 网页v 是网页u 的任意一个入链。
  • PR(v) 是网面v 的分值。
  • L(v) 是网页v 的出链数量。
  • 网页v 带给网页u 的分值就是 PR(v) / L(v)
  • 那么PR(u) 就等于所有的入链分值之和。

在上面的公式中,我们假设从一个页面v 到达它的所有的出链页面的概率是相等的

比如上图来说,页面A 有三个出链分别链接到了 B、C、D 上。那么当用户访问 A 的时候,就有跳转到 B、C 或者 D 的可能性,跳转概率均为 1/3

2,计算网页的分值

下面来看下如何计算网页的分值。

我们可以用一个表格,来表示上图中的网页的链接关系,及每个页面到其它页面的概率:

A B C D
A 0 A->A 1/2 B->A 1 C->A 0 D->A
B 1/3 A->B 0 B->B 0 C->B 1/2 D->B
C 1/3 A->C 0 B->C 0 C->C 1/2 D->C
D 1/3 A->D 1/2 B->D 0 C->D 0 D->D

根据这个表格中的数字,可以将其转换成一个矩阵M

假设 A、B、C、D 四个页面的初始影响力都是相同的,都为 1/4,即:

经过第一次分值转移之后,可以得到 W1,如下:

同理可以得到W2W3 一直到 Wn

  • W2 = M * W1
  • W3 = M * W2
  • Wn = M * Wn-1

那么什么时候计算终止呢?

佩奇和布林已经证明,不管网页的初识值选择多少(我们这假设都是1/4),最终都能保证网页的分值能够收敛到一个真实确定值。

也就是直到 Wn 不再变化为止。

这就是网页分值的计算过程,还是比较好理解的。

3,PageRank 的两个问题

我们上文中介绍到的是PageRank 的基本原理,是简化版本。在实际应用中会出现等级泄露(RankLeak)和等级沉没(Rank Sink)的问题。

如果一个网页没有出链,就会吸收其它网页的分值不释放,最终会导致其它网页的分值为0,这种现象叫做等级泄露。如下图中的网页C

相反,如果一个网页没有入链,最终会导致该网页的分值为0,这种现象叫做等级沉没。如下图中的网页C

4,PageRank 的随机浏览模型

为了解决上面的问题,拉里·佩奇提出了随机浏览模型,即用户并不都是依靠网页链接来访问网页,也有可能用其它方式访问网址,比如输入网址。

因此,提出了阻尼因子的概念,这个因子代表用户按照跳转链接来上网的概率,而 1-d 则代表用户通过其它方式访问网页的概率。

所以,将上文中的公式改进为:

其中:

  • d 为阻尼因子,通常可以取0.85
  • N 为网页总数。

5,用代码计算网页分值

如何用代码来计算网页的PR 分值呢?(为了方便查看,我把上图放在这里)

我们可以看到,该图实际上就是数据结构中的有向图,因此我们可以通过构建有向图来构建 PageRank 算法。

NetworkX 是一个Python 工具包,其中集成了常用的图结构和网络分析算法

我们可以用 NetworkX 来构建上图中的网络结构。

首先引入模块:

import networkx as nx

DiGraph 类创建有向图:

G = nx.DiGraph()

将4 个网页的链接关系,用数组表示:

edges = [
("A", "B"), ("A", "C"), ("A", "D"),
("B", "A"), ("B", "D"),
("C", "A"),
("D", "B"), ("D", "C")
]

数组中的元素作为有向图的边,并添加到图中:

for edge in edges:
G.add_edge(edge[0], edge[1])

使用pagerank 方法计算PR 分值:

# alpha 为阻尼因子
PRs = nx.pagerank(G, alpha=1)
print PRs

输出每个网页的PR 值:

{'A': 0.33333396911621094,
'B': 0.22222201029459634,
'C': 0.22222201029459634,
'D': 0.22222201029459634}

最终,我们计算出了每个网页的PR 值。

6,画出网络图

NetworkX 包中还提供了画出网络图的方法:

import matplotlib.pyplot as plt

# 画网络图
nx.draw_networkx(G)
plt.show()

如下:

我们还可以设置图的形状,节点的大小,边的长度等属性,具体可以点击这里查看。

更多关于 NetworkX 的内容可以参考其官方文档

7,总结

PageRank 算法给了我们一个很重要的启发,权重在很多时候是一个非常重要的指标。

  • 比如在人际交往中,个人的影响力不仅取决于你的朋友的数量,而且朋友的质量非常重要,说明了圈子的重要性。
  • 比如在自媒体时代,粉丝数并不能真正的代表你的影响力,粉丝的质量也很重要。如果你的粉丝中有很多大V,那么将大大增加你影响力。

本篇文章主要介绍了:

  • PageRank 算法的原理。
  • 简化版的PageRank 算法遇到的问题,以及解决方案:
    • 等级泄露和等级沉没。
    • 引出随机浏览模型来解决这两个问题。
  • 如何用代码模拟PageRank 算法:

(本节完。)


推荐阅读:

决策树算法-理论篇-如何计算信息纯度

决策树算法-实战篇-鸢尾花及波士顿房价预测

朴素贝叶斯分类-理论篇-如何通过概率解决分类问题

朴素贝叶斯分类-实战篇-如何进行文本分类

计算机如何理解事物的相关性-文档的相似度判断


欢迎关注作者公众号,获取更多技术干货。

PageRank 算法-Google 如何给网页排名的更多相关文章

  1. PageRank算法简介及Map-Reduce实现

    PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank Pag ...

  2. [转]PageRank算法

    原文引自: 原文引自: http://blog.csdn.net/hguisu/article/details/7996185 感谢 1. PageRank算法概述 PageRank,即网页排名,又称 ...

  3. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  4. 谷歌pagerank算法简介

    在这篇博客中我们讨论一下谷歌pagerank算法.这是参考的原博客连接:http://blog.jobbole.com/71431/ PageRank的Page可是认为是网页,表示网页排名,也可以认为 ...

  5. PageRank 算法简介

    有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...

  6. Machine Learning:PageRank算法

    1. PageRank算法概述 PageRank,即网页排名,又称网页级别.Google左側排名或佩奇排名.         在谷歌主导互联网搜索之前, 多数搜索引擎採用的排序方法, 是以被搜索词语在 ...

  7. PageRank算法原理与Python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  8. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  9. pagerank算法在数学模型中的运用(有向无环图中节点排序)

    一.模型介绍 pagerank算法主要是根据网页中被链接数用来给网页进行重要性排名. 1.1模型解释 模型核心: a. 如果多个网页指向某个网页A,则网页A的排名较高. b. 如果排名高A的网页指向某 ...

随机推荐

  1. ubuntu mplayer "无法打开 VDPAU backend libvdpau ..."

    gnome mplayer 报错"无法打开 VDPAU backend libvdpau_nvidia.so: cannot open shared object file: No such ...

  2. Blazor中的CSS隔离

    1.环境 VS 2019 16.9.0 Preview 1.0 .NET SDK 5.0.100 2.前言 CSS一旦生效,就会应用于全局,所以很容易出现冲突.为了解决这个问题CSS隔离就顺势而生.B ...

  3. IP 层收发报文简要剖析3--ip输入报文分片重组

    在ip_local_deliver中,如果检测到是分片包,则需要将报文进行重组.其所有的分片被重新组合后才能提交到上层协议,每一个被重新组合的数据包文用ipq结构实例来表示 struct ipq { ...

  4. 重构rbd镜像的元数据

    这个已经很久之前已经实践成功了,现在正好有时间就来写一写,目前并没有在其他地方有类似的分享,虽然我们自己的业务并没有涉及到云计算的场景,之前还是对rbd镜像这一块做了一些基本的了解,因为一直比较关注故 ...

  5. Vmware Tools is currently being installed on your system

    问题描述: 使用虚拟机安装Ubuntu过程中一直停留在"PLEASE WAIT! Vmware Tools is currently being installed on your syst ...

  6. 信息论-Turbo码学习

    1.Turbo码: 信道编码的初期:分组码实现编码,缺点有二:只有当码字全部接收才可以开始译码,需要精确的帧同步时延大,增益损失多 解决方案:卷积码:充分利用前一时刻和后一时刻的码组,延时小,缺点:计 ...

  7. Python_爬虫_百度图片

    百度图片有些有编码问题,暂时不能爬取,多试几个 #思路:抓取图片地址,根据地址转存图片(注意名称):难点:转码 # -*- coding:utf-8 -*- from urllib import re ...

  8. [LeetCode题解]109. 有序链表转换二叉搜索树 | 快慢指针 + 递归

    题目描述 给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: ...

  9. JVM字节码执行引擎

    一.概述 在不同的虚拟机实现里面,执行引擎在执行Java代码的时候可能会有解释执行(通过解释器执行)和编译器执行(通过即时编译器产生本地代码执行)两种选择,所有的Java虚拟机的执行引擎都是一致的:输 ...

  10. exec() has been disabled for security reasons

    1.修改php.ini里面:disable_functions 2.重启服务器 2.如果是虚拟机,就重启虚拟机