题目链接

http://www.lydsy.com/JudgeOnline/problem.php?id=1010

思路


斜率优化DP

我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i]的形式,其中f[j]中保存了只与j相关的量。这样的DP方程我们可以用单调队列进行优化,从而使得O(n^2)的复杂度降到O(n)。

可是并不是所有的方程都可以转化成上面的形式,比如dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j])。如果把右边的乘法化开的话,会得到x[i]*x[j]的项。这就没办法使得f[j]里只存在于j相关的量了。于是上面的单调队列优化方法就不好使了,所以我们需要一种新的优化方法,叫做斜率优化。

拿本题来说,我们设dp[i]表示装到第i个玩具的时候最少的花费,sum[i]表示前i个玩具的长度和。于是方程就是:

dp[i]  = min{ dp[j] + [i+sum[i]-(j+1+sum[j])-L]2 };

题目的N<=50000,二维铁定超时了。我们就来看看斜率优化如何做到从O(n^2)复杂度降到O(n)。

分析:

我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j] + [i+sum[i]-(j+1+sum[j])-L]< dp[k] + [i+sum[i]-(j+1+sum[k])-L]2。(因为是最小花费,所以优就是小于)

两边移项一下得到:[dp[j]+(j+1+sum[j])^2-(dp[k]+(k+1+sum[k])^2)]/(2*( (j+1+sum[j])-(k+1+sum[k]) )) < (i + sum[i]-L)。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。

那么不就是(yj-yk)/(xj-xk) < A[i]么?   左边是不是斜率的表示?

那么(yj-yk)/(xj-xk) < A[i]说明了什么呢?  我们前面是假设j的决策比k的决策要好才得到这个表示的,那么g[j,k]=(yj-yk)/(xj-xk) < A[i]代表这j的决策比k的决策要更优

斜率优化在于:①设k<j<i,如果g[i,j] < g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。‘

为什么呢?我们假设g[i,j] < A[i],那么就是说i点要比j点优,排除j点。如果g[i,j] >= A[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>A[i]。这说明还有k点会比j点更优,同样排除j点。排除多余的点,这便是一种优化!

由于我们排除了g[i,j] < g[j,k]的情况,所以整个有效点集呈现一种下凸性质,即k j的斜率要小于j i的斜率。这样,从左到右的斜率之间就是单调递增的了,所以我们就可以对g维护一个单调队列。

同时,函数A[i]也要具有单调递增的特性,所以第二个优化就在于:②如果单调队列的头两个点为i, j,斜率g[j, i] < A[i],则说明j优于i,并且由于A单调递增,所以g[j,i]恒小于A[],所以可以直接把i排除掉。

于是对于这类题斜率优化做法可以总结如下:

1,用一个单调队列来维护解集。

2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的下凸性质,即如果g[d,c]<g[c language=",b"][/c],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。

3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<A[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。


代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, end) for (int i = begin; i <= end; i ++)
using namespace std;

long long dp[50005], sum[50005];
vector <int> Q;
int n, L;
inline long long getDP(int i, int j){
return dp[j] + (i+sum[i]-(j+1+sum[j])-L) * (i+sum[i]-(j+1+sum[j])-L);
}
inline double getUP(int j, int k){
return (double)dp[j] + (double)(j+1+sum[j]) * (double)(j+1+sum[j]) - ((double)dp[k] + (double)(k+1+sum[k]) * (double)(k+1+sum[k]));
}
inline double getDOWN(int j, int k){
return 2.0 * ((j+1+sum[j]) - (k+1+sum[k]));
}
inline double getRIGHT(int i){
return (double)(sum[i] + i - L);
}
inline double slope(int j, int k){
return getUP(j, k) / getDOWN(j, k);
}
int main(){
scanf("%d %d", &n, &L);
sum[0] = 0, dp[0] = 0;
for (int i = 1; i <= n; i ++){
scanf("%lld", &sum[i]);
sum[i] += sum[i-1];
}
Q.clear();
Q.push_back(0);
for (int i = 1; i <= n; i ++){
while((int)Q.size() > 1 && slope(Q[1], Q[0]) <= getRIGHT(i))
Q.erase(Q.begin());
int tmp = Q[0];
dp[i] = getDP(i, Q[0]);
while( (int)Q.size() > 1 && slope(Q[(int)Q.size()-1], Q[(int)Q.size()-2]) >= slope(i, Q[(int)Q.size()-1]) )
Q.pop_back();
Q.push_back(i);
}
printf("%lld\n", dp[n]);
return 0;
}
[/cpp]

BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)的更多相关文章

  1. BZOJ 1010 HNOI2008 玩具装箱 斜率优化

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...

  2. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  4. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  5. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  8. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  9. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

随机推荐

  1. django 【认证】

    一.验证 1.views.py from django.contrib.auth.decorators import login_required from django.contrib.auth i ...

  2. Maven 在 IntelliJ IDEA 中的使用

    一.概述 Maven 为构建软件,与 Gradle 类似,也能以插件的方式在 IntelliJ IDEA 中得到使用. 同样地,你也可以配置环境变量,这样就能够在命令行中进行操作了. 二.使用方式 其 ...

  3. Java哲学家进餐

    某次操作系统实验存档. 这个哲学家除了吃就是睡.. 哲学家.java: package operating.entity.philosophyeating; import operating.meth ...

  4. Centos编译安装 LAMP (apache-2.4.7 + mysql-5.5.35 + php 5.5.8)+ Redis

    转载地址:http://www.cnblogs.com/whoamme/p/3530056.html 软件源代码包存放位置:/usr/local/src 源码包编译安装位置:/usr/local/软件 ...

  5. Windows Update error 80070003

    上次更新完成一半,这次更新便会出错.办法:删除上次更新残余文件. 删除Windows 用于标识计算机更新的临时文件.需要先停止Windows Update 服务: 在开始菜单的“搜索程序和文件”框输入 ...

  6. Java:出现错误提示(java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date)

    Java:出现错误提示(java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date) 原因分析: ...

  7. 20145327 《Java程序设计》第一周学习总结

    20145327 <Java程序设计>第一周学习总结 教材学习内容总结 Java根据领域不同,区分为Java SE.Java EE与Java ME三大平台.Java SE是各应用平台的基础 ...

  8. Linux下程序的机器级表示学习心得

    Linux下程序的机器级表示学习心得 上周学习完Linux程序的机器级表示后,对于其中有些还是掌握的不太透彻.对于老师提出的关于本章一些细节的问题还是有不会,所以又重新温习了一下上周的学习内容,以下为 ...

  9. 仔细讨论 C/C++ 字节对齐问题⭐⭐

    原文:https://www.cnblogs.com/AlexMiller/p/5509609.html 字节对齐的原因 为了提高 CPU 的存储速度,编译器会对 struct 和 union的存储进 ...

  10. CentOS 7 Nginx安装配置

    1.添加Nginx源 yum install epel-release 2.安装Nginx yum install nginx 3.启动Nginx systemctl start nginx //配置 ...