面试题30:最小的K个数
方法一:利用partition
void GetLeastNumbers_Solution1(int* input, int n, int* output, int k)
{
if(input == NULL || output == NULL || k > n || n <= || k <= )
return; int start = ;
int end = n - ;
int index = Partition(input, n, start, end);
while(index != k - )
{
if(index > k - )
{
end = index - ;
index = Partition(input, n, start, end);
}
else
{
start = index + ;
index = Partition(input, n, start, end);
}
} for(int i = ; i < k; ++i)
output[i] = input[i];
}
方法二:
我们可以先创建一个大小为k的数据容器来存储最小的k个数字。接下来我们每次从输入的n个整数中读入一个数。如果容器中已有的数字少于k个,则直接把这次读入的整数放入容器之中;如果容器中已有k个数字了,也就是容器已满,此时我们不能再插入新的数字而只能替换已有的数字。我们找出这已有的k个数中最大值,然和拿这次待插入的整数和这个最大值进行比较。如果待插入的值比当前已有的最大值小,则用这个数替换替换当前已有的最大值;如果带插入的值比当前已有的最大值还要大,那么这个数不可能是最小的k个整数之一,因为我们容器内已经有k个数字比它小了,于是我们可以抛弃这个整数。
因此当容器满了之后,我们要做三件事情:一是在k个整数中找到最大数,二是有可能在这个容器中删除最大数,三是可能要插入一个新的数字,并保证k个整数依然是排序的。如果我们用一个二叉树来实现这个数据容器,那么我们能在O(logk)时间内实现这三步操作。因此对于n个输入数字而言,总的时间效率就是O(nlogk)。
我们可以选择用不同的二叉树来实现这个数据容器。由于我们每次都需要找到k个整数中的最大数字,我们很容易想到用最大堆。在最大堆中,根结点的值总是大于它的子树中任意结点的值。于是我们每次可以在O(1)得到已有的k个数字中的最大值,但需要O(logk)时间完成删除以及插入操作。
我们自己从头实现一个最大堆需要一定的代码。我们还可以采用红黑树来实现我们的容器。红黑树通过把结点分为红、黑两种颜色并根据一些规则确保树是平衡的,从而保证在红黑树中查找、删除和插入操作都只需要O(logk)。在STL中set和multiset都是基于红黑树实现的。如果面试官不反对我们用STL中的数据容器,我们就直接拿过来用吧。下面是基于STL中的multiset的参考代码:
typedef multiset<int, greater<int> > intSet;
typedef multiset<int, greater<int> >::iterator setIterator; void GetLeastNumbers_Solution2(const vector<int>& data, intSet& leastNumbers, int k)
{
leastNumbers.clear(); if(k < || data.size() < k)
return; vector<int>::const_iterator iter = data.begin();
for(; iter != data.end(); ++ iter)
{
if((leastNumbers.size()) < k)
leastNumbers.insert(*iter); else
{
setIterator iterGreatest = leastNumbers.begin(); if(*iter < *(leastNumbers.begin()))
{
leastNumbers.erase(iterGreatest);
leastNumbers.insert(*iter);
}
}
}
}
面试题30:最小的K个数的更多相关文章
- 剑指Offer:面试题30——最小的k个数(java实现)
问题描述: 输入n个整数,找出其中最小的k个数 思路1: 先排序,再取前k个 时间复杂度O(nlogn) 下面给出快排序的代码(基于下面Partition函数的方法) public void Quic ...
- 面试题30.最小的k个数
题目:输入n个整数,找出其中最小的k个数,例如输入4,5,1,6,2,7,3,8 这8个数字,则最小的四个数字为1,2,3,4, 这道题是典型的TopK问题,剑指Offer提供了两种方法来实现,一种方 ...
- 30 最小的k个数
输入n个整数,找出其最小的k个数,例如输入4,5,1,6,2,7,3,8,最小的4个数为1,2,3,4 解法一:快排思想,会改变原数组 O(n) 注意是vector<int>& ...
- 剑指offer 面试题40. 最小的k个数
O(N)划分法,注意这个方法会改变原数据(函数参数是引用的情况下)!当然也可以再定义一个新容器对其划分 要求前k小的数,只要执行快排划分,每次划分都会把数据分成大小两拨.直到某一次划分的中心点正好在k ...
- leetcode 签到 面试题40. 最小的k个数
题目 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 示例 1: 输入:arr = [3,2,1], k = ...
- 《剑指offer》面试题40. 最小的k个数
问题描述 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 示例 1: 输入:arr = [3,2,1], k ...
- 剑指offer面试题30:最小的k个数
一.题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 二.解题思路 1.思路1 首先对数组进行排序,然后取出前k个数 ...
- (剑指Offer)面试题30:最小的k个数
题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路: 1.排序 把输入的n个整数排序,然后取前k个数: 时间复杂度 ...
- 【剑指offer】面试题30:最小的 k 个数
题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路: 这个是O(nlogk)时间复杂度的思路:用一个容器来保存最先 ...
- 【面试题030】最小的k个数
[面试题030]最小的k个数 题目: 输入n个整数,找出其中最小的k个数. 例如输入4.5.1.6.2.7.3.8这8个字,则其中最小的4个数字是1.2.3.4. 思路一: ...
随机推荐
- 如何设置eclipse格式化xml代码时不自动换行
如何设置eclipse格式化代码时不自动换行 2015年12月23日 09:08:36 qq_20889581 阅读数:3770 标签: eclipse格式化android 更多 个人分类: Ecli ...
- nova-conductor与AMQP(一)
源码版本:H版 一.AMQP基础 1. 什么是AMQP 可以参考如下文章: http://blog.csdn.net/linvo/article/details/5750987 http://blog ...
- OpenCV---直方图的应用(均衡化和图像比较)
一:全局直方图均衡化(对比度增强)equalizeHist def equalHist_demo(image): #OpenCV直方图均衡化都是基于灰度图像 gray = cv.cvtColor(im ...
- 分块+deque维护 Codeforces Round #260 (Div. 1) D. Serega and Fun
D. Serega and Fun time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
- 解决Ubuntu终端里面显示路径名称太长
方法/步骤 找到配置文件先进行备份: cp ~/.bashrc ~/.bashrc-bak 找到配置文件修改: vi ~/.bashrc 备份是为了防止配置修改出错,可以还原: 下面是我的/h ...
- CSS属性的私有前缀
在CSS属性能中,我们常常能看到-webkit-,-moz-之类的前缀,这种就叫做浏览器私有前缀,是浏览器对于新CSS属性的一个提前支持.-webkit-是webkit内核的,-moz-是Firefo ...
- Web中的宽和高
不同的宽高定义 //网页可见区域宽 document.body.clientWidth //网页可见区域高 document.body.clientHeight //网页可见区域宽(包括边线和滚动条的 ...
- Google guava 中的Monitor
synchronized 自从Java提供了多线程编程,我们经常需要处理这样的情况:在特定的时间,我们需要限制访问,确保只有一个线程访问我们的代码.Java提供了同步关键字synchronized来实 ...
- JavaScript 秘密花园——对象的使用和属性操作
JavaScript 中所有变量都是对象,除了两个例外 null 和 undefined. false.toString(); // 'false' [1, 2, 3].toString(); // ...
- Vue 子路由 与 单页面多路由 的区别
本文地址:http://www.cnblogs.com/veinyin/p/7911292.html 最近学完了基础课程,打算整理一波笔记,对基本概念梳理一遍,惊觉对子路由和单页面多路由混淆的一塌糊涂 ...