方法一:利用partition

 void GetLeastNumbers_Solution1(int* input, int n, int* output, int k)
{
if(input == NULL || output == NULL || k > n || n <= || k <= )
return; int start = ;
int end = n - ;
int index = Partition(input, n, start, end);
while(index != k - )
{
if(index > k - )
{
end = index - ;
index = Partition(input, n, start, end);
}
else
{
start = index + ;
index = Partition(input, n, start, end);
}
} for(int i = ; i < k; ++i)
output[i] = input[i];
}

方法二:

我们可以先创建一个大小为k的数据容器来存储最小的k个数字。接下来我们每次从输入的n个整数中读入一个数。如果容器中已有的数字少于k个,则直接把这次读入的整数放入容器之中;如果容器中已有k个数字了,也就是容器已满,此时我们不能再插入新的数字而只能替换已有的数字。我们找出这已有的k个数中最大值,然和拿这次待插入的整数和这个最大值进行比较。如果待插入的值比当前已有的最大值小,则用这个数替换替换当前已有的最大值;如果带插入的值比当前已有的最大值还要大,那么这个数不可能是最小的k个整数之一,因为我们容器内已经有k个数字比它小了,于是我们可以抛弃这个整数。

因此当容器满了之后,我们要做三件事情:一是在k个整数中找到最大数,二是有可能在这个容器中删除最大数,三是可能要插入一个新的数字,并保证k个整数依然是排序的。如果我们用一个二叉树来实现这个数据容器,那么我们能在O(logk)时间内实现这三步操作。因此对于n个输入数字而言,总的时间效率就是O(nlogk)。

我们可以选择用不同的二叉树来实现这个数据容器。由于我们每次都需要找到k个整数中的最大数字,我们很容易想到用最大堆。在最大堆中,根结点的值总是大于它的子树中任意结点的值。于是我们每次可以在O(1)得到已有的k个数字中的最大值,但需要O(logk)时间完成删除以及插入操作。

我们自己从头实现一个最大堆需要一定的代码。我们还可以采用红黑树来实现我们的容器。红黑树通过把结点分为红、黑两种颜色并根据一些规则确保树是平衡的,从而保证在红黑树中查找、删除和插入操作都只需要O(logk)。在STL中set和multiset都是基于红黑树实现的。如果面试官不反对我们用STL中的数据容器,我们就直接拿过来用吧。下面是基于STL中的multiset的参考代码:

 typedef multiset<int, greater<int> >            intSet;
typedef multiset<int, greater<int> >::iterator setIterator; void GetLeastNumbers_Solution2(const vector<int>& data, intSet& leastNumbers, int k)
{
leastNumbers.clear(); if(k < || data.size() < k)
return; vector<int>::const_iterator iter = data.begin();
for(; iter != data.end(); ++ iter)
{
if((leastNumbers.size()) < k)
leastNumbers.insert(*iter); else
{
setIterator iterGreatest = leastNumbers.begin(); if(*iter < *(leastNumbers.begin()))
{
leastNumbers.erase(iterGreatest);
leastNumbers.insert(*iter);
}
}
}
}

面试题30:最小的K个数的更多相关文章

  1. 剑指Offer:面试题30——最小的k个数(java实现)

    问题描述: 输入n个整数,找出其中最小的k个数 思路1: 先排序,再取前k个 时间复杂度O(nlogn) 下面给出快排序的代码(基于下面Partition函数的方法) public void Quic ...

  2. 面试题30.最小的k个数

    题目:输入n个整数,找出其中最小的k个数,例如输入4,5,1,6,2,7,3,8 这8个数字,则最小的四个数字为1,2,3,4, 这道题是典型的TopK问题,剑指Offer提供了两种方法来实现,一种方 ...

  3. 30 最小的k个数

    输入n个整数,找出其最小的k个数,例如输入4,5,1,6,2,7,3,8,最小的4个数为1,2,3,4 解法一:快排思想,会改变原数组    O(n) 注意是vector<int>& ...

  4. 剑指offer 面试题40. 最小的k个数

    O(N)划分法,注意这个方法会改变原数据(函数参数是引用的情况下)!当然也可以再定义一个新容器对其划分 要求前k小的数,只要执行快排划分,每次划分都会把数据分成大小两拨.直到某一次划分的中心点正好在k ...

  5. leetcode 签到 面试题40. 最小的k个数

    题目 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 示例 1: 输入:arr = [3,2,1], k = ...

  6. 《剑指offer》面试题40. 最小的k个数

    问题描述 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3.8这8个数字,则最小的4个数字是1.2.3.4. 示例 1: 输入:arr = [3,2,1], k ...

  7. 剑指offer面试题30:最小的k个数

    一.题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 二.解题思路 1.思路1 首先对数组进行排序,然后取出前k个数 ...

  8. (剑指Offer)面试题30:最小的k个数

    题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路: 1.排序 把输入的n个整数排序,然后取前k个数: 时间复杂度 ...

  9. 【剑指offer】面试题30:最小的 k 个数

    题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路: 这个是O(nlogk)时间复杂度的思路:用一个容器来保存最先 ...

  10. 【面试题030】最小的k个数

    [面试题030]最小的k个数 题目:     输入n个整数,找出其中最小的k个数.     例如输入4.5.1.6.2.7.3.8这8个字,则其中最小的4个数字是1.2.3.4.     思路一:   ...

随机推荐

  1. OpenCV(C++版)图像读取,创建,复制,保存,显示

    http://blog.163.com/yuyang_tech/blog/static/21605008320132642254689/ 一个小例子: #include "stdafx.h& ...

  2. 图像格式转换之BMP格式转换为JPG格式

    // bmp2jpg.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "jpeglib.h" #inc ...

  3. Eclipse错误笔记!

    1.ERROR: JDWP Unable to get JNI 1.2 environment, jvm->GetEnv() return code = -2   JDWP exit error ...

  4. uva 11722 Joining with Friend

    https://vjudge.net/problem/UVA-11722 题意:你和朋友都要乘坐火车,并且都会途径A城市.你们很想会面,但是你们到达这个城市的准确时刻都无法确定.你会在时间区间[t1, ...

  5. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  6. Let's Encrypt 免费通配 https 签名证书 安装方法2 ,安卓签名无法认证!

    Let's Encrypt 免费通配 https 签名证书 安装方法 按照上文 配置完毕后你会发现 在pc浏览器中正常访问,在手机浏览器中无法认证 你只需要安装一个或多个中级证书 1.查看Nginx ...

  7. 【洛谷P2014】选课

    题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分,每门课有一 ...

  8. HDU 3790 最短生成树 (最短路)

    题目链接 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. ...

  9. 一. Jmeter--使用代理录制脚本

    Jmeter脚本是以.JMX格式为主 1. Jmeter也是支持录制的,支持第三方录制方式和代理录制方式. (1).第三方录制主要是通过badboy来录制,录制后另存为jmx格式即可. (2).Jme ...

  10. 【Tomcat】 windows下注册tomcat服务以及设置jvm参数

    注册服务: 1 >cd /d D:\Java\tomcat-7.0.57-Css\bin //进入目录 1 >service.bat install  //注册服务,同理删除服务为 rem ...